Advertisement

Sorghum Germplasm Resources Characterization and Trait Mapping

  • Hari D. UpadhyayaEmail author
  • Mani Vetriventhan
  • Santosh Deshpande
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Sorghum is the fifth most important cereal crop mostly grown for food, feed, fodder, and bioenergy purposes, and a staple for over 500 million resource-poor people in marginal environments. Globally, over 236,000 sorghum germplasm accessions have been conserved in genebanks, of which the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India and the Plant Genetic Resources Conservation Unit, Southern Regional Plant Introduction Station, University of Georgia, USDA-ARS, together conserve about 32 % of the total global sorghum collections. Germplasm diversity representative subsets such as core and mini core collections and a genotyping-based reference set have been established in sorghum providing access to large diversity. The sorghum mini core collection established at the ICRISAT is being widely used for identification of sources for resistance to various biotic and abiotic stresses, and for agronomic and grain nutritional traits. Large genetic and genomic resources are available in sorghum, and resequencing of diverse germplasm resources including the mini core collection and wild and weedy relatives will provide researchers opportunities to relate sequence variations with phenotypic traits of interest and their utilization in sorghum improvement. Genomewide association mapping studies have identified genomic regions that are associated with important agronomic traits and  resistance to biotic and abiotic stresses. High-throughput phenotyping platforms/technologies are required for precise phenotyping to attain greater genetic gains. The current status of germplasm, its characterization and utilization has been summarized in this chapter.

Keywords

Sorghum Germplasm Stress tolerance Core collection Mini core collection Reference set 

References

  1. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61CrossRefPubMedGoogle Scholar
  2. Bandyopadhyay R, Mughogho LK, Rao KRP (1988) Sources of resistance to sorghum grain molds. Plant Dis 72:504–508CrossRefGoogle Scholar
  3. Batz J, Méndez-Dorado M, Thomasson J (2016) Imaging for high-throughput phenotyping in energy sorghum. J Imaging 2(1):4. doi: 10.3390/jimaging2010004 CrossRefGoogle Scholar
  4. Besufekad Y, Bantte K (2013) Evaluation and association mapping for drought tolerance in sorghum [Sorghum bicolor (L.) Moench]. Glob J Sci Front Res Agric Vet 13(5)Google Scholar
  5. Bhosale SU, Stich B, Rattunde HFW, Weltzien E, Haussmann BIG, Hash CT, Ramu P, Cuevas HE, Paterson AH, Melchinger AE, Parzies HK (2012) Association analysis of photoperiodic flowering time genes in west and central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol 12(1):32CrossRefPubMedPubMedCentralGoogle Scholar
  6. Billot C, Rivallan R, Sall MN, Fonceka D, Deu M, Glaszmann J-C, Noyer J-L, Rami J-F, Risterucci A-M, Wincker P, Ramu P, Hash CT (2012) A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae). Am J Bot 99(6):e245–250CrossRefPubMedGoogle Scholar
  7. Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Rivallan R, Li Y, Lu P, Gardes L, Noyer J, Wang T, Folkertsma RT, Arnaud E, Upadhyaya HD, Glaszmann C, Hash CT (2013) Massive sorghum collection genotyped with SSR Markers to enhance use of global genetic resources. PLoS ONE 8(4):e59714CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bouchet S, Pot D, Deu M, Rami J-F, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Kilian A, Glaszmann J-C (2012) Genetic structure, linkage disequilibrium and signature of selection in Sorghum: lessons from physically anchored DArT markers. PLoS ONE 7(3):e33470CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165(1):367–386PubMedPubMedCentralGoogle Scholar
  10. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  11. Cuevas HE, Prom LK, Magill C (2012) Reaction to rust by a subset of sorghum accessions from Zimbabwe. Asian J Plant Pathol 6(2):33–40CrossRefGoogle Scholar
  12. Cuevas HE, Prom LK, Erpelding JE (2014) Tapping the US sweet sorghum collection to identify biofuel germplasm. Sugar Technol 17(4):428–438CrossRefGoogle Scholar
  13. Cuevas HE, Prom LK, Isakeit T, Radwan G (2016) Assessment of sorghum germplasm from Burkina Faso and South Africa to identify new sources of resistance to grain mold and anthracnose. Crop Protec 79:43–50CrossRefGoogle Scholar
  14. Dahlberg JA, Burke JJ, Rosenow DT (2004) Development of a sorghum core collection: refinement and evaluation of a subset from Sudan. Econ Bot 58(4):556–567CrossRefGoogle Scholar
  15. de Wet JMJ (1978) Systematics and evolution of sorghum sect sorghum (Gramineae). Am J Bot 65:477–484CrossRefGoogle Scholar
  16. Dwivedi S, Sahrawat K, Upadhyaya HD, Ortiz R (2013) Food, nutrition and agrobiodiversity under global climate change. In: Sparks DL (ed) Advances in agronomy. Academic Press, Elsevier Inc., USA, pp 1–128. http://dx.doi.org/10.1016/B978-0-12-407686-0.00001-4
  17. Erpelding J (2012) Anthracnose resistance in sorghum germplasm from the Segou region of Mali. J Crop Improv 26(3):397–414CrossRefGoogle Scholar
  18. Evans J, McCormick RF, Morishige D, Olson SN, Weers B, Hilley J, Klein P, Rooney W, Mullet J (2013) Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes. PLoS ONE 8(11):e79192CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fernandez MGS, Schoenbaum GR, Goggi AS (2014) Novel germplasm and screening methods for early cold tolerance in Sorghum. Crop Sci 54(6):2631–2638CrossRefGoogle Scholar
  20. Frankel OH (1984) Genetic perspective of germplasm conservation. In: Arber W, Limensee K, Peacock WJ, Stralinger P (eds) Genetic manipulations: impact on man and society. Cambridge Univ Press, Cambridge, UK, pp 161–170Google Scholar
  21. Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:379–380CrossRefGoogle Scholar
  22. Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Sci 41:241–246CrossRefGoogle Scholar
  23. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176CrossRefGoogle Scholar
  24. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9(5):e97047CrossRefPubMedPubMedCentralGoogle Scholar
  25. IAASTD (2009) Agriculture at a cross-roads. Global report. Island Press, Washington DC, USAGoogle Scholar
  26. Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457CrossRefGoogle Scholar
  27. Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360CrossRefGoogle Scholar
  28. Kamala V, Sharma HC, Rao DM, Varaprasad KS, Bramel P (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed. 128:137–142CrossRefGoogle Scholar
  29. Kamala V, Sharma HC, Rao DM, Varaprasad KS, Bramel PJ, Chandra S (2012) Interactions of spotted stem borer Chilo partellus with wild relatives of sorghum. Plant Breed 131(4):511–521CrossRefGoogle Scholar
  30. Kapanigowda MH, Perumal R, Djanaguiraman M, Aiken RM, Tesso T, Prasad PVV, Little CR (2013) Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springerplus 2:650Google Scholar
  31. Karunakar RI, Narayana YD, Pandey S, Mughogho L, Singh SD (1994a) Evaluation of early-flowering sorghum germplasm accessions for downy mildew resistance in the greenhouse. Int Sorghum Millets Newslett 35:102–103Google Scholar
  32. Karunakar RI, Narayana YD, Pande S, Mughogho L, Singh S (1994b) Evaluation of wild and weedy sorghums for downy mildew resistance. Int Sorghum Millets Newslett 35:104–106Google Scholar
  33. Kong W, Jin H, Franks CD, Kim C, Bandyopadhyay R, Rana MK, Auckland SA, Goff VH, Rainville LK, Burow GB, Woodfin C, Burke JJ, Paterson AH (2013) Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. G3: Genes Genomes. Genetics 3:101–108Google Scholar
  34. Leiser WL, Rattunde H, Weltzien E, Cisse N, Abdou M, Diallo A, Tourè AO, Magalhaes JV, Haussmann B (2014) Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biol 14(1):206CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24(1):41–47CrossRefGoogle Scholar
  36. Liu Q, Liu H, Wen J, Peterson PM (2014) Infrageneric phylogeny and temporal divergence of sorghum (Andropogoneae, Poaceae) based on low-copy nuclear and plastid sequences. PLoS One 9:e104933Google Scholar
  37. Luo H, Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, Bekele WA, Tai S, Jordan DR, Godwin ID, Snowdon RJ, Mace ES, Jing H-C, Luo J (2016) SorGSD: a sorghum genome SNP database. Biotechnol Biofuels 9(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9(1):26CrossRefGoogle Scholar
  39. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, HuW Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013a) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320PubMedPubMedCentralGoogle Scholar
  40. Mace ES, Hunt CH, Jordan DR (2013b) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126(5):1377–1395CrossRefPubMedGoogle Scholar
  41. Mannai El, Shehzad T, Okuno K (2011) Variation in flowering time in sorghum core collection and mapping of QTLs controlling flowering time by association analysis. Genet Resour Crop Evol 58:983–989CrossRefGoogle Scholar
  42. Mantilla Perez MB, Zhao J, Yin Y, Hu J, Fernandez MGS (2014) Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor Appl Genet 127(12):2645–2662CrossRefPubMedGoogle Scholar
  43. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251CrossRefPubMedGoogle Scholar
  44. Morris G (2015) Dissecting complex traits in sorghum with a nested association mapping population. In: Conference paper. Plant and Animal Genome XXIII. January 10–14 (2015) San Diego. CA, USAGoogle Scholar
  45. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110(2):453–458CrossRefPubMedGoogle Scholar
  46. Mutegi E, Sagnard F, Semagn K, Deu M, Muraya M, Kanyenji B, de Villiers S, Kiambi D, Herselman L, Labuschagne M (2011) Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet 122(5):989–1004Google Scholar
  47. Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome J 2(1):48–62CrossRefGoogle Scholar
  48. Neilson EH, Edwards AM, Blomstedt CK, Berger B, Møller BL, Gleadow RM (2015) Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot 66(7):1817–1832CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nelson JC, Wang S, Wu Y, Li X, Antony G, White FF, Yu J (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genom 12(1):352CrossRefGoogle Scholar
  50. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556CrossRefPubMedGoogle Scholar
  51. Prasada Rao KE, Ramanatha Rao V (1995) The use of characterization data in developing a core collection of sorghum. In: Hodgkin T, Brown AHD, van Hintum Th.JL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester, UK, pp 109–115Google Scholar
  52. Prom LK, Erpelding J (2009) New sources of grain mold resistance among sorghum accessions from Sudan. Trop Subtrop Agroecosyst 10(3):457–463Google Scholar
  53. Prom LK, Erpelding JE, Montes-Garcia N (2007) Chinese sorghum germplasm evaluated for resistance to downy mildew and anthracnose. Commun Biometry Crop Sci 2(1):26–31Google Scholar
  54. Prom LK, Erpelding J, Perumal R, Isakeit T, Cuevas H (2012) Response of sorghum accessions from four African countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose. Am J Plant Sci 3:125–129CrossRefGoogle Scholar
  55. Prom LK, Perumal R, Montes-Garcia N, Isakeit T, Odvody GN, Rooney WL, Little CR, Magill C (2015) Evaluation of Gambian and Malian sorghum germplasm against downy mildew pathogen, Peronosclerospora sorghi, in Mexico and the USA. J Gen Plant Pathol 81:24–31CrossRefGoogle Scholar
  56. Reddy BVS, Ramesh S, Reddy PS, Ramaiah B, Salimath PM, Kachapur R (2005) Sweet sorghum-A potential alternative raw material for bio-ethanol and bio-energy. Int Sorghum Millet Newsl. 46:79–86Google Scholar
  57. Reddy BVS, Kumar AA, Reddy PS, Elangovan M (2008) Sorghum germplasm: diversity and utilization. In: Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB, Evenson RE (eds) Sorghum genetic enhancement: research process, dissemination and impacts. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 153–169. ISBN 978-92-9066-512-0Google Scholar
  58. Seetharam (2011) Phenotypic assessment of sorghum (Sorghum bicolor L. Moench) germplasm reference set for yield and related traits under post flowering drought conditions. PhD Thesis. Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IndiaGoogle Scholar
  59. Sharma HC, Taneja SL, Kameswara Rao N, Prasada Rao KE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information Bulletin no. 63. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 184 p. ISBN 92-9066-458-4Google Scholar
  60. Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2010) Resistance to grain mold and downy mildew in a mini-core collection of sorghum germplasm. Plant Dis 94(4):439–444CrossRefGoogle Scholar
  61. Sharma R, Upadhyaya HD, Manjunatha SV, Rao VP, Thakur RP (2012) Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Dis 96:1629–1633CrossRefGoogle Scholar
  62. Shehzad T, Okuizumi H, Kawase M, Okuno K (2009) Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol 56(6):809–827Google Scholar
  63. Singh V, Singh Y (2014) Screening of sorghum germplasm against Exserohilum leaf blight. Trends Biosci 7(16):2087–2089Google Scholar
  64. Thakur RP, Rao VP, Sharma R (2008) Characterization of grain mold resistant sorghum germplasm accessions for physio- morphological traits. SAT eJournal 6(December):1–7Google Scholar
  65. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110(18):E1695–1704CrossRefPubMedPubMedCentralGoogle Scholar
  66. Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298CrossRefGoogle Scholar
  67. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780CrossRefGoogle Scholar
  68. Upadhyaya HD, Wang Y-H, Sharma S, Singh S, Hasenstein KH (2012a) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187(3):401–410CrossRefGoogle Scholar
  69. Upadhyaya HD, Wang Y-H, Sharma S, Singh S (2012b) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55(6):471–479CrossRefPubMedGoogle Scholar
  70. Upadhyaya HD, Wang Y-H, Gowda CLL, Sharma S (2013a) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126(8):2003–2015CrossRefPubMedGoogle Scholar
  71. Upadhyaya HD, Wang Y-H, Sharma R, Sharma S (2013b) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126(6):1649–1657CrossRefPubMedGoogle Scholar
  72. Upadhyaya HD, Wang Y-H, Sharma R, Sharma S (2013c) SNP markers linked to leaf rust and grain mold resistance in sorghum. Mol Breed 32(2):451–462CrossRefGoogle Scholar
  73. Upadhyaya HD, Sharma S, Dwivedi SL, Singh SK (2014a) Sorghum genetic resources: conservation and diversity assessment fo enhanced utilization in sorghum improvement. In: Wang YH, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Boca Raton (USA), London (UK), New York (USA), pp 28–55Google Scholar
  74. Upadhyaya HD, Dwivedi SL, Ramu P, Singh SK, Singh S (2014b) Genetic variability and effect of postflowering drought on stalk sugar content in sorghum mini core collection. Crop Sci 54(5):2120–2130CrossRefGoogle Scholar
  75. Upadhyaya HD, Dwivedi SL, Singh S, Sahrawat KL, Singh SK (2016a) Genetic variation and postflowering drought effects on seed iron and zinc in ICRISAT sorghum mini core collection. Crop Sci 56:374–383CrossRefGoogle Scholar
  76. Upadhyaya HD, Wang Y-H, Dintyala SV, Dwivedi SL, Prasad PVV, Burrell AM, Klein R, Morris GP, Klein PE (2016b) Association mapping of germinability and seedling vigor in sorghum under controlled low temperature conditions. Genome 59:137–145CrossRefPubMedGoogle Scholar
  77. Upadhyaya HD, Dwivedi SL, Vetriventhan M, Krishnamurthy L, Singh SK (2017) Post-flowering drought tolerance using managed stress trials, adjusted to flowering and mini core collection in sorghum. Crop Sci. doi: 10.2135/cropsci2016.04.0280
  78. Vadez V, Kholova J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 66(18):5581–5593CrossRefPubMedPubMedCentralGoogle Scholar
  79. Vadez V, Krishnamurthy L, Hash CT, Upadhyaya HD, Borrell AK (2011) Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci 62:645–655CrossRefGoogle Scholar
  80. van Treuren R, van Hintum TJL (2014) Next-generation genebanking: plant genetic resources management and utilization in the sequencing era. Plant Genet Resour 12(3):298–307CrossRefGoogle Scholar
  81. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883CrossRefPubMedPubMedCentralGoogle Scholar
  82. Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2011) Identification of SSR markers associated with saccharification yield using pool-based genome- wide association mapping in sorghum. Genome 54:883–889CrossRefPubMedGoogle Scholar
  84. Wang Y-H, Acharya A, Burrell AM, Klein RR, Klein PE, Hasenstein KH (2013a) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56(11):659–665CrossRefPubMedGoogle Scholar
  85. Wang Y-H, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breed 30(1):281–292CrossRefGoogle Scholar
  86. Wang Y, Upadhyaya HD, Burrell AM, Sahraeian SME, Klein RR, Klein PE (2013b) genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3: Genes Genomes Genet 3:783–793Google Scholar
  87. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yang X-H, Xu Z-H, Xue H-W (2005) Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17(1):116–131CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang D, Kong W, Robertson J, Goff VH, Epps E, Kerr A, Mills G, Cromwell J, Lugin Y, Phillips C, Paterson AH (2015) Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC Plant Biol 15(1):107CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hari D. Upadhyaya
    • 1
    • 2
    • 3
    Email author
  • Mani Vetriventhan
    • 1
  • Santosh Deshpande
    • 1
  1. 1.Genebank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  2. 2.Department of AgronomyKansas State UniversityManhattanUSA
  3. 3.The UWA Institute of AgricultureThe University of Western AustraliaCrawleyAustralia

Personalised recommendations