Skip to main content

Cytogenetics of Sorghum

  • Chapter
  • First Online:
The Sorghum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Sorghum is an interesting genus having a large number of well-recognized species taxonomically classified into five subgenera. Cytogenetic analysis led to the understanding of the nature of chromosomal variations, origins, and probable relationships based on chromosome morphology. Progress in the science of conventional and molecular cytogenetics, and genomic research provide a detailed insight into the genome organization of an individual or species, leading to enhanced utilization of genetic and physical information towards improvement of the crop. The integration of genetic, physical, and cytomolecular maps of the Sorghum genus is useful to scientists working on genomics of grass species. Large-scale molecular karyotyping of grass genomes would facilitate alignment of related chromosomal regions among different grass species and also facilitate genetic and cytogenetic studies of chromosome organization and evolution. As compared to other crop species little is known about the karyomorphology in sorghum mainly due to the small size of its chromosomes. In this chapter efforts have been made to collate the scattered information on karyotype studies, cytotaxonomy, phylogenic relation, numerical and structural variations, genome architecture, and wide introgression in sorghum. Implications of the information on sorghum improvement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adanson M (1763) Families de Plantes 2:38. Paris, France

    Google Scholar 

  • Ashok Kumar A, Reddy Belum VS, Kaul SL (2008) Alternative cytoplasmic male sterility systems in sorghum and their utilization. In: Reddy Belum VS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum improvement in the new millenium. ICRISAT, India, pp 153–169

    Google Scholar 

  • Atkinson GF, Franzke CJ, Ross JG (1957) Differential reaction of two varieties of sorghum to colchicin treatment. J Hered 48:259–564

    Article  CAS  Google Scholar 

  • Ayyangar GNR (1942) The description of crop plant characters and their ranges of variation. IV. Variability of Indian sorghum. Indian J Agric Sci 12:527–563

    Google Scholar 

  • Ayyangar GNR and Ponnaiya BWX (1937) The occurrence and inheritance of purple pigment on the glumes of sorghum close on emergence from the boot. Curr Sci 5:590

    Google Scholar 

  • Ayyanger GNR, Ponnaiya BXW (1941) Studies in para-sorghum snowden—the group with bearded nodes. Proc Indian Acad Sci 14:17–24

    Google Scholar 

  • Bapat DR, Mote UN (1983) Sources of shootfly resistance in sorghum. J Maharashtra Agric Univ 7:238–240

    Google Scholar 

  • Barabas Z (1962) Observation of sex differentiation in sorghum by use of induced male sterile mutants. Nature 195:257–259

    Article  Google Scholar 

  • Bartek MS (2010) Survey for intergeneric pollen tube growth in intergeneric pollinations utilizing the iap allele in Sorghum bicolor. Texas A&M University, College Station, TX, USA, p 41

    Google Scholar 

  • Bartek MS, Hodnett GL, Burson BL, Stelly DM, Rooney WLR (2012) Pollen tube growth after intergeneric pollinations of iap-homozygous sorghum. Crop Sci 52:1553–1560

    Article  Google Scholar 

  • Bonde MR, Freytag RE (1979) Host range of an American isolate of Peronosclerospora sorghi. Plant Dis Rep 63:650–654

    Google Scholar 

  • Bonman JM, Paisooksantivatana Y, Pitipornchai P (1983) Host range of Peronosclerospora sorghi in Thailand. Plant Dis 67(6):630–632

    Article  Google Scholar 

  • Bosemark NO (1957) Further studies on accessory chromosomes in grasses. Hereditas 43:285–297

    Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, Exum HE, Goff VH, Herrick KL, Steele CLJ, Karunakaran S, Lafayette GK, Lemke C, Marler BS, Masters SL, McMillan JM, Nelson LK, Newsome GA, Nwakanma CC, Odeh RN, Phelps CA, Rarick EA, Rogers CJ, Ryan SP, Slaughter KA, Soderlund CA, Tang HB, Wing RA, Paterson AH (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MS (1943) Haploid plants in sorghum. J Hered 34:163–166

    Article  Google Scholar 

  • Butany WJ (1955) Chromosome behavior of five sorghum species and the use of embryo culture in growing their interspecific hybrids. MS Thesis, A&M College of Texas, College Station, TX, USA

    Google Scholar 

  • Casady AJ, Anderson KL (1952) Hybridization, cytological and inheritance studies of a sorghum cross-autotetraploid sudangrass × (Johnsongrass × 4n Sudangrass). Agron J 44:189–193

    Article  Google Scholar 

  • Casady AJ, Heyne EG, Weibel DE (1960) Inheritance of female sterility in sorghum. J Hered 51:35–38

    Google Scholar 

  • Celarier RP (1956) Additional evidence for five as the basic chromosome number of the Andropogoneae. Rhodora 58:135–143

    Google Scholar 

  • Celarier RP (1958) Cytotaxonomic notes on the subsection halepense of the genus Sorghum. Bull Torrey Bot Club 85:49–62

    Article  Google Scholar 

  • Celarier RP (1959) Cytotaxonomy of the Andropogoneae, IV. Subtribe Sorgheae. Cytologia 24:285–303

    Article  Google Scholar 

  • Chin TC (1946) The cytology of polyploidy sorghum. Am J Bot 33:611–614

    Article  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  PubMed  Google Scholar 

  • Cox TS (1983) Introgression of wild germplasm into cultivated sorghum department: agronomy major: plant breeding and cytogenetics. Iowa State University Ames, IA, USA, p 169

    Google Scholar 

  • Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB, Brummer EC, Jackson W (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21(2):59–91. doi:10.1080/0735-260291044188

    Article  Google Scholar 

  • Damon EG (1961) Studies on the occurrence of multiploid sporocytes in three varieties of cytoplasmic male-sterile and the normal fertile variety, resistant wheat and sorghum. Phyton (Argentina) 17:193–203

    Google Scholar 

  • Darlington CD, Thomas PT (1941) Morbid mitosis and the activity ofinert chromosomes in sorgum. Proc Roy Soc London B 130:127–150

    Article  Google Scholar 

  • de Wet JMJ, Harlan JR, Price EG (1976) Variability in sorghum bicolor. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton Publisher, Hague, Netherlands, pp 453–464

    Google Scholar 

  • Deodikar GB (1951) Sorghum versicolor Anderss—a species highly resistant to Striga. Curr Sci 20:135–136

    CAS  PubMed  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246

    Article  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Price HJ (2007a) Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Syst Evol 268:29–43

    Article  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007b) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Doggett H (1957) Tetraploid varieties of Sorghum vulgare. Nature 179:786

    Article  Google Scholar 

  • Doggett H (1962) Tetraploid hybrid sorghum. Nature 196:755–756

    Article  Google Scholar 

  • Doggett H (1964) Fertility improvement in autotetraploid sorghum. I. Cultivated autotetraploids. Heredity 19:403–417

    Article  Google Scholar 

  • Doggett H (1976) Sorghum bicolor (Gramineae-Andropogoneae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, New York, pp 112–117

    Google Scholar 

  • Doggett H (1988) Sorghum. Longman Scientific & Technical, London, UK

    Google Scholar 

  • Draye X, Lin Y-R, Qian X, Bowers JE, Burow GB, Morrell PL, Peterson DG, Presting GG, Resn S, Wing RA, Paterson AH (2001) Towards integration of comparative genetic, physical, diversity and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol 125:1325–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan RR, Bramel-Cox PJ, Miller FR (1991) Contributions of introduced sorghum germplasm to hybrids development in the USA. In: Shands HL, Wiesner LE (eds) Use of plant introductions in the cultivar development, part 1. crop science society of America, vol 17. Special Publication, Madison, WI, USA, pp 69–101

    Google Scholar 

  • Durra BN, Stebbins GL (1952) A polyhaploid obtained from a hybrid derivation of S. halepense × S. vulgare var. sudanense. Genetics 37:369–374

    Google Scholar 

  • Dusseau A (1945) Les effets de la tetraploidie chez le sorgho sucrier. Compt Rend Acad Sci Paris 221:115–116

    CAS  Google Scholar 

  • Dweikat I (2005) A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor, and the common Johnsongrass weed Sorghum halepense. Mol Breed 16:93–101

    Article  Google Scholar 

  • Endrizzi JE (1957) Cytological studies in some species and hybrids in the Eu-sorghums. Bot Gaz 119:1–10

    Article  Google Scholar 

  • Endrizzi JE, Morgan DT Jr (1955) Chromosomal interchanges and evidence for duplication. J Hered 46:201–208

    Article  Google Scholar 

  • Erichsen AW, Ross JG (1957) A triploid derived from a selfed haploid sorghum plant. Crop Sci 3:99–100

    Article  Google Scholar 

  • Erichsen AW, Ross JG (1963) Irregularities at microsporogenesis in colchicine-induced male sterile mutants in Sorghum vulgare Pers. Crop Sci 3:481–483

    Article  Google Scholar 

  • Franzmann BA, Hardy AT (1996) Testing the host status of Australian indigenous sorghums for the sorghum midge. In: Foale MA, Henzell RG, Kneip JF (eds) Proceedings of the third Australian sorghum conference). Tamworth, NSW, Australia, pp 365–367

    Google Scholar 

  • Gaines EF, Aase HC (1926) A haploid wheat plant. Am J Bot 13:373–385

    Article  Google Scholar 

  • Garber ED (1944) A cytological study of the genus sorghum; subsections para-sorghum and Eu-sorgum. Am Nat 78:89

    Article  Google Scholar 

  • Garber ED (1948) A reciprocal translocation in sorghum versicolor Andress. Am J Bot 35:295–297

    Article  Google Scholar 

  • Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–362

    Google Scholar 

  • Garber ED (1954) Cytotaxonomic studies in the genus sorghum. III. The polyploid species of the subgenera para-sorghum and stiposorghum. Bot Gaz 115:336–342

    Article  Google Scholar 

  • Garber ED, Snyder LA (1951) Cytotaxonomic studies in the genus sorghum. II. Two new species from Australia. Madrona 11:6–10

    Google Scholar 

  • Gardner RC, Howarth AJ, Hahn P, Brownluedi M, Shepherd RJ, Messing J (1981) The complete nucleotide-sequence of an infectious clone of cauliflower mosaic-virus by M13MP7 shotgun sequencing. Nucleic Acids Res 9:2871–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill JR, Rooney WL, Klein PE (2014) Effect of humidity on intergeneric pollinations of iap (inhibition of Alien Pollen) sorghum [Sorghum bicolor (L.) Moench]. Euphytica 198:381–387

    Article  Google Scholar 

  • Gomez MI, Islam-Faridi MN, Woo SS, Schertz KF, Jr Czeschin, Wing RA, Stelly DM, Price HJ (1997) FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40:475–478

    Article  CAS  PubMed  Google Scholar 

  • Gomez M, Islam-Faridi MN, Zwick M, Czeschin DG Jr, Hart GE, Wing RA, DM Stelly, Price HJ (1998) Tetraploid nature of Sorghum bicolor (L.). J Hered 89:188–190

    Article  Google Scholar 

  • Gu MH, Ma TH, Liang GH (1984) Karyotype analysis of seven species in the genus Sorghum. J Hered 75:196–202

    Article  Google Scholar 

  • Hackel E (1889) Andropogoneae. In: de Candolle A (ed) Monographie phanerogamarum, vol 6. Masson, Paris, France, pp 1–716

    Google Scholar 

  • Hadley HH (1953a) Cytological relationship between Sorghum vulgare and S. halepense. Agron J 45:139–143

    Article  Google Scholar 

  • Hadley HH (1953b) Cytological relationships between Sorghum vilgare and S. halepense. Agron J 45:139–143

    Article  Google Scholar 

  • Hadley HH (1958) Chromosome numbers, fertility and rhizome expression of hybrids between grain sorghum and Johnsongrass. Agron J 50:278–282

    Article  Google Scholar 

  • Hadley HH, Mahan JL (1956) The cytogenetic behavour of the progeny from a backcross (Sorghum vulgare × S. helepense × S. vulgare). Agron J 48:102–106

    Article  Google Scholar 

  • Haeckel (1885) Engler’s bot. Jahrab VII:115–126

    Google Scholar 

  • Haensel HD (1960) Responses of experimental 3, a sorghum variety, to gamma radiation and colchicin. MS Thesis South Dakota State College, College Station, South Dakota, USA

    Google Scholar 

  • Hanna WW, Schertz KF (1970) Inheritance and trisome linkage of seedling characters in Sorghum bicolor (L.) Moench. Crop Sci 10:441–443

    Article  Google Scholar 

  • Hanna WW, Schertz KF (1971) Trisome identification in Sorghum bicolor (L.) Moench by observing progeny of triploid × translocation stocks. Can J Genet Cytol 13:105–109

    Article  Google Scholar 

  • Harlan JR (1965) The possible role of weed races in the evolution of cultivated plants. Euphytica 14:173–176

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12(2):172–176

    Article  Google Scholar 

  • Harris KM (1976) The sorghum midge. Ann Appl Biol 64:114–118

    Article  Google Scholar 

  • Hodnett GL, Burson BL, Rooney WL, Dillon SL, Price HJ (2005) Pollen-pistil interactions result in reproductive isolation between sorghum bicolor and divergent Sorghum species. Crop Sci 45:1403–1409

    Article  Google Scholar 

  • Hodnett GL, Hale AL, Packer DJ, Stelly DM, Silva JD, Rooney WL (2010) Elimination of a reproductive barrier facilitates intergeneric hybridization of Sorghum bicolor and Saccharum. Crop Sci 50:1188–1195

    Article  Google Scholar 

  • Huang CC, Ross JG, Haensel HD (1963) Reciprocal translocation in sorghum vulgare. Can J Genet Cytol 5:227–232

    Article  Google Scholar 

  • Huelgas VC, Lawrence P, Adkins SW, Mufti MU, Godwin ID (1996) Utilization of the Australian native species for sorghum improvement. Proceedings of the 3rd Australian sorghum conference. Australian Institute of Agricultural Sciences, Melbourne, Australia, pp 369–375

    Google Scholar 

  • Huskins CL, Smith SG (1932) A cytological study of the genus sorghum Pers. I. The somatic chromosomes. J Genet 25:241–250

    Article  Google Scholar 

  • Huskins CL, Smith SG (1934) A cytological study of the genus sorghum Pers. II. The meiotic chromosomes. J Genet 28:387–395

    Article  Google Scholar 

  • Islam-Faridi MN, Childs KL, Klein PE, Hodnett MA, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosome I: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janaki-Ammal EK (1939) Supernumerary chromosomes in para-sorghum. Curr Sci 8:210–211

    Google Scholar 

  • Janaki-Ammal EK (1940) Chromosome diminution in a plant. Nature 146:839–840

    Article  Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996a) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996b) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kamala V, Sharma HC, Manohar Rao D, Varaprasad KS, Bramel PJ (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly Atherigona soccata. Plant Breed 28:137–142

    Article  Google Scholar 

  • Kamala V, Sharma HC, Manohar Rao D, Varaprasad KS, Bramel PJ, Chandra S (2012) Interactions of spotted stem borer Chilo partellus with wild relatives of sorghum. Plant Breed 131:511–521

    Article  Google Scholar 

  • Kamala V, Muraya M, Dwivedi SL, Upadhyaya HD (2015) Wild sorghums—their potential use in crop improvement. In: Wang YH, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Talor & Francis Group, Boca Raton (USA), London (UK), New York (USA), pp 56–89

    Google Scholar 

  • Karper RE (1930) Inheritance in grain sorghum. Texas Agric Exp Sta Annu Rep 43:48–51

    Google Scholar 

  • Karper RE, Chisholm AT (1936) Chromosome numbers in sorghum. Am J Bot 23:369–374

    Article  Google Scholar 

  • Karper RE, Stephens JC (1936) Floral abnormalities in sorghum. J Hered 27:183

    Google Scholar 

  • Kellogg EA (2013) Phylogenetic relationships of Saccharinae and Sorghinae. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, USA, pp 3–21

    Chapter  Google Scholar 

  • Keng YL (1939) The gross morphology of Andropogoneae. Sinensis 10:274–343

    Google Scholar 

  • Khan ZR, Pickett JA, Berg JVD, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962

    Article  CAS  Google Scholar 

  • Kidd HJ (1952) Haploid and triploid sorghum. J Hered 43:204

    Article  Google Scholar 

  • Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE (2005a) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchomatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005b) Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics 169:955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Mosishige DT, Schlueter SD, Childs KL, Ale M (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaswamy N, Chandrasekharan P, Meenakshi K (1958) Abnormal meiosis in the grain sorghums. II. The cytogenetics of the progeny of the desynaptic plant—2. Cytologia 23:251–269

    Article  Google Scholar 

  • Kuhlman LC (2007) Sorghum introgression breeding utilizing S. macrospermum. PhD Thesis, Plant Breeding, Graduate Studies of Texas A&M University, USA

    Google Scholar 

  • Kuhlman LC, Rooney WL (2011) Registration of Tx3361 sorghum germplasm. J Plant Regis 5:133–134

    Article  Google Scholar 

  • Kuhlman LC, Burson BL, Klein PE, Klein RR, Stelly DM, Price HJ, Rooney WL (2008) Genetic recombination in S. bicolor × S. macrospermum interspecific hybrids. Genome 51:749–756

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman LC, Burson BL, Stelly DM, Klein PE, Klein RR, Price HJ, Rooney WL (2010) Early-generation germplasm introgression from Sorghum macrospermum into sorghum (S. bicolor). Genome 53:419–429

    Article  CAS  PubMed  Google Scholar 

  • Laubscher FX (1945) A genetic study of sorghum relationships. Dept Agri (Union of South Africa) Sci Bull 242

    Google Scholar 

  • Laurie D, Bennett MD (1989) Genetic variation in sorghum for the inhibition of maize pollen tube growth. Ann Bot 64:675–681

    Article  Google Scholar 

  • Lazarides M, Hacker JB, Andrew MH (1991) Taxonomy cytology and ecology of indigenous Australian sorghums, Sorghum moench, Adropogoneae, Poaceae. Austr Syst Bot 4:591–636

    Article  Google Scholar 

  • Lessman KJ (1965) Chromosome analysis in sorghum, Sorghum vulgare Pers. Crop Sci 5:361–362

    Article  Google Scholar 

  • Levan A (1941) Syncyte formation in pollent mother cells of haploid Phleum protense. Hereditas 27:243–252

    Article  Google Scholar 

  • Lin PS, Ross JG (1969) Morphology and cytological behavior of aneuploids of Sorghum bicolor. Can J Genet Cytol 11:908–918

    Article  Google Scholar 

  • Lin YR, Zhu L, Ren S, Yang J, Schertz KF, Paterson AH (1999) A Sorghum propinquum BAC library, suitable for cloning genes associated with loss-of-function mutations during crop domestication. Mol Breed 5:511–520

    Article  CAS  Google Scholar 

  • Lin Y-R, Draye X, Qian X, Ren S, Zhu L-H, Tomkins J, Wing R, Li Z, Paterson AH (2000) Locus-specific contig assembly in highly-duplicated genomes, using the BAC-RF method. Nucleic Acids Res 28:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnaeus C (1753) Species plantarum 1047

    Google Scholar 

  • Longley AE (1932) Chromosomes in grass sorghum. J Agric Res 44:317–321

    Google Scholar 

  • Lonkar SG, Borikar ST (1994) Inheritance of A1 and A2 cytoplasmic genetic male sterility in sorghum. J Maharashtra Agric Univ 19:450

    Google Scholar 

  • Luo YW, Yen XC, Zhang GY, Liang GH (1992) Agronomic traits and chromosome behavior of autotetraploid sorghums. Plant Breed 109:46–53

    Article  Google Scholar 

  • Magoon ML, Shambulingappa KG (1961) Karyomorphology of Sorghum propinquum and its bearing on the origin of the 40-chromosome sorghum. Chromosoma 42:460–465

    Article  Google Scholar 

  • Magoon ML, Tayyab MA (1968) Cytogenetic studies in Eu-sorghum. J Genet 60:52–67

    Article  Google Scholar 

  • Magoon ML, Ramanna MS, Shambulingappa KG (1961) Desynapsis and spontaneous chromosome breakage in Sorghum purpureo-sericeum. Indian J Genet 21:87–97

    Google Scholar 

  • Magoon ML, Tayyab MA, Sadasivaiah RS (1967) A cytomorphological study of the genus Sorghum. Bot Mag Tokyo 80:427–439

    Article  Google Scholar 

  • Malm NR (1967) Female sterility in grain sorghum involving linked genes. Crop Sci 7:548

    Article  Google Scholar 

  • Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10 (http://genomebiology.com/content/14/1/R10)

    Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839

    Article  CAS  Google Scholar 

  • Moench C (1794) Methodus plantas horti botanici. Et Agri 207

    Google Scholar 

  • Morakinya JA, Olorode O (1988) Cytogenetic studies in Sorghum bicolor (L.) Moench. Cytologia 53:653–658

    Article  Google Scholar 

  • Morden CW, Doebley J, Schertz KF (1990) Allozyme variation among the spontaneous species of sorghum section sorghum (poaceae). Theor Appl Genet 80:296–304

    Article  CAS  PubMed  Google Scholar 

  • Mullet J, Stelly D, Rooney W, Gould JM (2010) Novel biofuel/biofeedstocks to redefine bioenergy production economics. www.researchvalley.org/UserFiles/File/…/Tx_AgriLife_Research_Biofuel.p

  • Munoz JM, Webster OJ, Morris RM (1963) Studies on triploids and their progenies in sorghum. Agron Abstr 86

    Google Scholar 

  • Murty UR (1986) Effect of A2 cytoplasm on the inheritance of plant height in temperate × tropical sorghum crosses. Sorghum Newsl 29:77

    Google Scholar 

  • Murty UR, Gangadhar G (1990) Milo and non-milo sources of cytoplasm in Sorghum bicolor (L.) Moench. III. Genetics of fertility restoration. Cereal Res Commun 18:111–116

    Google Scholar 

  • Murty UR, Rao NGP (1974) Cytogenetics of sorghum. In: Kachroo P (ed) Advancing frontiers in cytogenetics in evolution and improvement of plants, proceedings of national seminar held at University of Kashmir, Oct 14–19, 1972. Hinclustan Publisher Delhi, India

    Google Scholar 

  • Muyekho FN, Barrion AT, Khan ZR (2005) Host range for stemborers and associated natural enemies in different farming systems of Kenya. Insect Sci Appl 3:173–183

    Google Scholar 

  • Nair NV (1999) Production and cyto-morphological analysis of intergeneric hybrids of Sorghum × Saccharum. Euphytica 108:187–191

    Article  Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN, Mary S (2006) Characterization of intergeneric hybrids of saccharum using molecular markers. Genet Resour Crop Evol 53:163–169

    Article  CAS  Google Scholar 

  • Narayan KN (1961) Behaviour of colchicin induced polyploids in sorghum vulgare Pres and their crosses. MS Thesis A&M College of Texas, College Station, Texas, USA

    Google Scholar 

  • Ng’uni D, Geleta M, Gatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pande S, Bock CH, Bandyopadhyay R, Narayana YD, Reddy BVS, Lenné JM, Jeger MJ (1997) Downy mildew of sorghum. ICRISAT, Patancheru, India, p 51

    Google Scholar 

  • Papathanasiou GA, Lessman KJ (1969) Use of cytoplasmic male sterility, compared to hand emasculation, and translocations for chromosome analysis in Sorghum vulgare Pers. Crop Sci 9:403–405

    Article  Google Scholar 

  • Parvatham G, Rangaswamy SRS (2004) Karyomorphological and phylogenetic studies in different species of Sorghum L Moench. Cytologia 69:301–305

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pi CP, Tsai S (1965) Trisomics of Sorghum vulgare. Sorghum Newsl 8:3–5

    Google Scholar 

  • Piper CV (1916) Forage plants and their culture. Macmillan, New York, USA

    Google Scholar 

  • Piper JK, Kulakow PA (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 and backcross generations of S. bicolor x S. halepense hybrids. Can J Bot 72:468–474

    Article  Google Scholar 

  • Poon NH and Wu HK (1967) Identification of involved chromosomes in trisomics of Sorghum vulgare Pers. J Agr Ass China 58(N.S.):18–32

    Google Scholar 

  • Price E, Ross WN (1955) The occurrence of trisomic and other aneuploids in a cross of triploid × diploid Sorgum vulgare. Agron J 47:591–592

    Article  Google Scholar 

  • Price E, Ross WN (1957) Cytological study of a triploid × diploid Sorgum vulgare Pers. Agron J 49:237–240

    Article  Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Rooney WL (2005a) A Sorghum bicolor × S. macrospermum hybrid recovered by embryo rescue and culture. Aust J Bot 53:579–582

    Article  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005b) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL (2006) Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Sci 46:2617–2622

    Article  CAS  Google Scholar 

  • Qian ZQ (1990) Discussions on the inheritance of A1 cytoplasmic male sterility and the establishment of differentiating line for restoring genotype in sorghum. Hereditas 12:11–12

    Google Scholar 

  • Qin C, Wei W, Sestras RE (2008) The phylogenetic analysis and identification of sorghum helepense and related species based on Chi-B partial sequence. Not Bot Hort Agrobot Cluj 36:55–58

    Google Scholar 

  • Qing Shan L, Ai Ping Jun, Yin Li Tuan, Yao Zhang Fu (2000) New grain sorghum cytoplasmic male-sterile line A2 V4 A and F1 hybrid Jinza No.12 for Northwest China. Int Sorghum Millets Newsl 41:31–32

    Google Scholar 

  • Quinby J (1981) Interaction of genes and cytoplasms in male sterility in sorghum. In: Proceedings of the annual corn and sorghum industry research conference American seed trade association, corn and sorghum division, corn and sorghum research conference

    Google Scholar 

  • Quinby JR, Karmer NW, Stephens JC, Lahr KA, Karper RE (1958) Grain sorghum production in texas. Texas Agr Exp Sta Bull 35:912

    Google Scholar 

  • Raman VS, Sankaran S (1979) Reproductive potential of polyploidy Sorghum as appraisal. Sorghum Newsletter 22:8–11

    Google Scholar 

  • Rao NK, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721

    Article  Google Scholar 

  • Raveendran M, Rangasamy SRS, Sentwil N (2000) Potential of interspecific hybridization for developing ratoonable forage sorghum. Indian J Genet 60:259–260

    Google Scholar 

  • Reddy VR (1958) On the differentiation of A and B chromosomes of Sorghum purpureo-sericeum, a Eu-sorghum. J Indian Bot Soc 37:279–289

    Google Scholar 

  • Reddy BVS, Prasad Rao KE (1992) Breeding new seed parents: Breeding non-milo restorer lines. Pages 63–64 in cereals program, ICRISAT annual report 1991, international crops research institute for the semi-arid tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India

    Google Scholar 

  • Reddy BVS, Ramesh S, Reddy PS, Ramaiah B (2007) Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 154:153–164

    Article  Google Scholar 

  • Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 44:2221–2229

    Article  Google Scholar 

  • Rooney WL (2000) Genetics and cytogenetics. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, histroy, technology, and production. John Wiley & Sons, Inc., New York, pp 261–307

    Google Scholar 

  • Ross JG, Chen CH (1962) Fertility differences in autotetraploid sorghum. Hereditas 48:324

    Article  Google Scholar 

  • Ross WM, Hackerott HL (1972) Registration of seven isocytoplasmic sorghum germplasm lines. Crop Sci 12:720–721

    Article  Google Scholar 

  • Salomon ES (1940) Sorghum sudanese (piper) stapf tetraploidie obtaenido por colchicina. Anal. Inst. Filotec Santa Catalina (Argentina) 2:13–16

    Google Scholar 

  • Sang Y, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species. Genome 43:918–922

    Article  CAS  PubMed  Google Scholar 

  • Schertz KF (1962) Cytology, fertility and gross morphology of induced polyploids of Sorghum vulgare. Can J Genet Cytol 4:179–186

    Article  Google Scholar 

  • Schertz KF (1963) Chromosomal, morphological and fertility characteristics of haploids and their derivatives in Sorghum vulgare Pers. Crop Sci 3:445–447

    Article  Google Scholar 

  • Schertz KF (1966) Morphological and cytological characteristics of five trisomics of Sorghum vulgare Pers. Crop Sci 6:519–523

    Article  Google Scholar 

  • Schertz KF (1970a) Chromosome translocation set in Sorghum bicolor (L.) Moench. Crop Sci 10:329–332

    Article  Google Scholar 

  • Schertz KF (1970b) Chromosome translocation set in Sorghum bicolor (L.) Moench. Crop Sci 10:329–332

    Article  Google Scholar 

  • Schertz KF (1974) Morphological and cytological characteristics of five additional trisomics of Sorghum bicolor (L.) Moench. Crop Sci 14:106–109

    Article  Google Scholar 

  • Schertz KF (1994) Male-sterility in sorghum: its characteristics and importance. In: Witcombe JR, Duncan RR (eds) Use of molecular markers in sorghum and pearl millet breeding for developing countries. Proceedings of the international conference on genetics improvement, overseas development administration (ODA) plant sciences research conference, 29 March–1 April 1993, Norwich, UK, ODA, UK, pp 35–37

    Google Scholar 

  • Schertz KF, Ritchey JM (1978) Cytoplasmic genic male sterility systems in sorghum. Crop Sci 18:890–893

    Article  Google Scholar 

  • Schertz KF, Stephens JC (1965) Origin and occurrence of triploids of Sorghum vulgare Pers and their chromosomal and morphological characteristics. Crop Sci 5:514–516

    Article  Google Scholar 

  • Schlarbaum SE, Tsuchiya T (1981) Differential reactivity to staining in tree chromosomes. J Hered 72:62–63

    Article  Google Scholar 

  • Schulz-Schaeffer J (1980) Cytogenetics, Plants, Animals, Humans. Springer-Verlag, New York, USA, p 436

    Google Scholar 

  • Schurtz KF (1963) Chromosomal, morphological and fertility characteristics of haploids and their derivatives in Sorghum vulgare Pers. Crop Sci 3:444–447

    Google Scholar 

  • Schurtz KF (1966) Morphological and cytological characteristics of five trisomics of Sorghum vulgare Pers. Crop Sci 6:519–523

    Article  Google Scholar 

  • Sengupta SP, Weibel DE (1971) Cytological study of the hybrids of Sorghum halepens (L.) Pers. Proc Okla Acad Sci 51:56–60

    Google Scholar 

  • Sharma AK, Bhattacharjee D (1957) Chromosome studies in sorghum. Cytologia 22:287–311

    Article  Google Scholar 

  • Sharma HC, Franzmann BA (2001) Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J Appl Entomol 125:109–114

    Article  Google Scholar 

  • Sharma HC, Reddy BVS, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma R, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum: present status and need for future research. Int Sorghum Millets Newsl 46:36–43

    Google Scholar 

  • Singh SP, Hadley HH (1961) Pollen abortion in cytoplasmic male sterile sorghum. Crop Sci 1:430–432

    Article  Google Scholar 

  • Singh RJ, Tsuchiya T (1982) An improved Giemsa N banding technique for the identification of barley chromosomes. J Hered 73:227–229

    Article  Google Scholar 

  • Snowden JD (1935) A classification of the cultivated Sorghum. Kew Bull XXI:221–254

    Google Scholar 

  • Snowden JD (1936) The cultivated races of sorghum. London, UK

    Google Scholar 

  • Snowden JD (1955) The wild fodder sorghums of the section eu-sorghum. J Linn Soc Lond 55:191–260

    Article  Google Scholar 

  • Spangler RE (2003) Taxonomy of sarga, sorghum and vacoparis (Poaceae: Andropogoneae). Austr Syst Bot 16:279–299

    Article  Google Scholar 

  • Spangler RE, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Stapf O (1919) Gramineae in prain D, flora of tropical Africa, vol 9. Reeve, London, UK

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York, USA

    Google Scholar 

  • Stephens JC (1937) Male sterility in sorghum: its possible utilization in production of hybrid seed. J Am Soc Agron 29:690–696

    Article  Google Scholar 

  • Stephens JC, Holland PF (1954) Cytoplasmic male sterility for hybrid sorghum seed production. Agron J 46:20–23

    Google Scholar 

  • Sun Y, Skinner D, Liang G, Hulber S (1994) Phylogenetic analysis of sorghum and related texa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Liang GH (1988) The genomic relationship between cultivated sorghum [Sorghum bicolor (L.) Moench] and Johnsongrass [S. halepense (L.) Pers.]: a re-evaluation. Theor Appl Genet 76(2):277–284

    Google Scholar 

  • Venkateswarulu J, Reddi VR (1968) Cytological studies of sorghum trisomics. J Hered 59:179–182

    Article  Google Scholar 

  • Vinall HN (1926) Mem Hort Soc Newyork III:75–77

    Google Scholar 

  • Warmke HE, Overman MA (1972a) Cytoplasmic male sterility in sorghum. I. Callose behaviour in fertile and sterile anthers. J Hered 63:103–108

    Article  Google Scholar 

  • Warmke HE, Overman MA (1972b) Tapetal behaviour in fertile and sterile anthers. J Hered 63:227–233

    Article  Google Scholar 

  • Webster OJ (1965) Genetic studies in Sorghum vulgere (Pers.). Crop Sci 5:207–210

    Article  Google Scholar 

  • Webster OJ, Singh SP (1964) Breeding behavior and histological structure of non-dehiscent anther character in Sorghum vulgare Pers. Crop Sci 4:656–658

    Article  Google Scholar 

  • Weston LA, Alsaadawi IS, Baerson SR (2013) Sorghum allelopathy from ecosystem to molecule. J Chem Ecol 39:625–637

    Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmire DK (2011) Wide hybridization, genomic, and overwintering characterization of high-biomass sorghum spp. feedstocks. MS Thesis in Plant Breeding, Texas A&M University, USA, pp 77

    Google Scholar 

  • Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooten DR (2001) The use of Sorghum propinquum to enhance agronomic traits in sorghum. Master’s Thesis, Texas A&M University, College Station, TX, USA

    Google Scholar 

  • Worstell JV, Kidd HJ, Schertz KF (1984) Relationships among male sterility inducing cytoplasms of sorghum. Crop Sci 24:186–189

    Article  Google Scholar 

  • Wu TP (1980) Cyto genetic studies of the B chromosomes in Sorghum nitidum. In: Proceedings of the national science council of Republic of China, pp 297–306

    Google Scholar 

  • Wu TP (1982) Comparative karyomorphology of two species in Parasorghum. Proc Natl Sci Counc (Taiwan) Part B. 6:319–325

    Google Scholar 

  • Wu TP (1984) B chromosomes in Sorghum purpureosericeum. Proc Natl Sci Counc Repub China 8:198–209

    Google Scholar 

  • Wu TP (1992) B-chromosomes in Sorghum stipoideum. Heredity 68:457–463

    Article  Google Scholar 

  • Yu H, Liang GH, Kofoid KD (1991) Analysis of C-banding chromosome patterns of sorghum. Crop Sci 31:1524–1527

    Article  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Czeschin DG Jr, Wing RA, Hart GE, Stelly DM, Price HJ (1998) Physical mapping of liguleless linkage group in sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148:1983–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Zhang HB, Hodnett GL, Gomez MI, Kim JS, Price HJ, Stelly DM (2000) Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot 87:1757–1764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Rakshit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rakshit, S., Ganapathy, K.N., Visarada, K.B.R.S. (2016). Cytogenetics of Sorghum. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_3

Download citation

Publish with us

Policies and ethics