Cytogenetics of Sorghum

  • Sujay RakshitEmail author
  • K. N. Ganapathy
  • K. B. R. S. Visarada
Part of the Compendium of Plant Genomes book series (CPG)


Sorghum is an interesting genus having a large number of well-recognized species taxonomically classified into five subgenera. Cytogenetic analysis led to the understanding of the nature of chromosomal variations, origins, and probable relationships based on chromosome morphology. Progress in the science of conventional and molecular cytogenetics, and genomic research provide a detailed insight into the genome organization of an individual or species, leading to enhanced utilization of genetic and physical information towards improvement of the crop. The integration of genetic, physical, and cytomolecular maps of the Sorghum genus is useful to scientists working on genomics of grass species. Large-scale molecular karyotyping of grass genomes would facilitate alignment of related chromosomal regions among different grass species and also facilitate genetic and cytogenetic studies of chromosome organization and evolution. As compared to other crop species little is known about the karyomorphology in sorghum mainly due to the small size of its chromosomes. In this chapter efforts have been made to collate the scattered information on karyotype studies, cytotaxonomy, phylogenic relation, numerical and structural variations, genome architecture, and wide introgression in sorghum. Implications of the information on sorghum improvement are discussed.


Cytogenetics Chromosome Karyotype Euploids Aneuploids Translocation 


  1. Adanson M (1763) Families de Plantes 2:38. Paris, FranceGoogle Scholar
  2. Ashok Kumar A, Reddy Belum VS, Kaul SL (2008) Alternative cytoplasmic male sterility systems in sorghum and their utilization. In: Reddy Belum VS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum improvement in the new millenium. ICRISAT, India, pp 153–169Google Scholar
  3. Atkinson GF, Franzke CJ, Ross JG (1957) Differential reaction of two varieties of sorghum to colchicin treatment. J Hered 48:259–564CrossRefGoogle Scholar
  4. Ayyangar GNR (1942) The description of crop plant characters and their ranges of variation. IV. Variability of Indian sorghum. Indian J Agric Sci 12:527–563Google Scholar
  5. Ayyangar GNR and Ponnaiya BWX (1937) The occurrence and inheritance of purple pigment on the glumes of sorghum close on emergence from the boot. Curr Sci 5:590Google Scholar
  6. Ayyanger GNR, Ponnaiya BXW (1941) Studies in para-sorghum snowden—the group with bearded nodes. Proc Indian Acad Sci 14:17–24Google Scholar
  7. Bapat DR, Mote UN (1983) Sources of shootfly resistance in sorghum. J Maharashtra Agric Univ 7:238–240Google Scholar
  8. Barabas Z (1962) Observation of sex differentiation in sorghum by use of induced male sterile mutants. Nature 195:257–259CrossRefGoogle Scholar
  9. Bartek MS (2010) Survey for intergeneric pollen tube growth in intergeneric pollinations utilizing the iap allele in Sorghum bicolor. Texas A&M University, College Station, TX, USA, p 41Google Scholar
  10. Bartek MS, Hodnett GL, Burson BL, Stelly DM, Rooney WLR (2012) Pollen tube growth after intergeneric pollinations of iap-homozygous sorghum. Crop Sci 52:1553–1560CrossRefGoogle Scholar
  11. Bonde MR, Freytag RE (1979) Host range of an American isolate of Peronosclerospora sorghi. Plant Dis Rep 63:650–654Google Scholar
  12. Bonman JM, Paisooksantivatana Y, Pitipornchai P (1983) Host range of Peronosclerospora sorghi in Thailand. Plant Dis 67(6):630–632CrossRefGoogle Scholar
  13. Bosemark NO (1957) Further studies on accessory chromosomes in grasses. Hereditas 43:285–297Google Scholar
  14. Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedPubMedCentralGoogle Scholar
  15. Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, Exum HE, Goff VH, Herrick KL, Steele CLJ, Karunakaran S, Lafayette GK, Lemke C, Marler BS, Masters SL, McMillan JM, Nelson LK, Newsome GA, Nwakanma CC, Odeh RN, Phelps CA, Rarick EA, Rogers CJ, Ryan SP, Slaughter KA, Soderlund CA, Tang HB, Wing RA, Paterson AH (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brown MS (1943) Haploid plants in sorghum. J Hered 34:163–166CrossRefGoogle Scholar
  17. Butany WJ (1955) Chromosome behavior of five sorghum species and the use of embryo culture in growing their interspecific hybrids. MS Thesis, A&M College of Texas, College Station, TX, USAGoogle Scholar
  18. Casady AJ, Anderson KL (1952) Hybridization, cytological and inheritance studies of a sorghum cross-autotetraploid sudangrass × (Johnsongrass × 4n Sudangrass). Agron J 44:189–193CrossRefGoogle Scholar
  19. Casady AJ, Heyne EG, Weibel DE (1960) Inheritance of female sterility in sorghum. J Hered 51:35–38Google Scholar
  20. Celarier RP (1956) Additional evidence for five as the basic chromosome number of the Andropogoneae. Rhodora 58:135–143Google Scholar
  21. Celarier RP (1958) Cytotaxonomic notes on the subsection halepense of the genus Sorghum. Bull Torrey Bot Club 85:49–62CrossRefGoogle Scholar
  22. Celarier RP (1959) Cytotaxonomy of the Andropogoneae, IV. Subtribe Sorgheae. Cytologia 24:285–303CrossRefGoogle Scholar
  23. Chin TC (1946) The cytology of polyploidy sorghum. Am J Bot 33:611–614CrossRefGoogle Scholar
  24. Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933PubMedCrossRefGoogle Scholar
  25. Cox TS (1983) Introgression of wild germplasm into cultivated sorghum department: agronomy major: plant breeding and cytogenetics. Iowa State University Ames, IA, USA, p 169Google Scholar
  26. Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB, Brummer EC, Jackson W (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21(2):59–91. doi: 10.1080/0735-260291044188 CrossRefGoogle Scholar
  27. Damon EG (1961) Studies on the occurrence of multiploid sporocytes in three varieties of cytoplasmic male-sterile and the normal fertile variety, resistant wheat and sorghum. Phyton (Argentina) 17:193–203Google Scholar
  28. Darlington CD, Thomas PT (1941) Morbid mitosis and the activity ofinert chromosomes in sorgum. Proc Roy Soc London B 130:127–150CrossRefGoogle Scholar
  29. de Wet JMJ, Harlan JR, Price EG (1976) Variability in sorghum bicolor. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton Publisher, Hague, Netherlands, pp 453–464Google Scholar
  30. Deodikar GB (1951) Sorghum versicolor Anderss—a species highly resistant to Striga. Curr Sci 20:135–136PubMedGoogle Scholar
  31. Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246CrossRefGoogle Scholar
  32. Dillon SL, Lawrence PK, Henry RJ, Price HJ (2007a) Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Syst Evol 268:29–43CrossRefGoogle Scholar
  33. Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007b) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989PubMedPubMedCentralCrossRefGoogle Scholar
  34. Doggett H (1957) Tetraploid varieties of Sorghum vulgare. Nature 179:786CrossRefGoogle Scholar
  35. Doggett H (1962) Tetraploid hybrid sorghum. Nature 196:755–756CrossRefGoogle Scholar
  36. Doggett H (1964) Fertility improvement in autotetraploid sorghum. I. Cultivated autotetraploids. Heredity 19:403–417CrossRefGoogle Scholar
  37. Doggett H (1976) Sorghum bicolor (Gramineae-Andropogoneae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, New York, pp 112–117Google Scholar
  38. Doggett H (1988) Sorghum. Longman Scientific & Technical, London, UKGoogle Scholar
  39. Draye X, Lin Y-R, Qian X, Bowers JE, Burow GB, Morrell PL, Peterson DG, Presting GG, Resn S, Wing RA, Paterson AH (2001) Towards integration of comparative genetic, physical, diversity and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol 125:1325–1341PubMedPubMedCentralCrossRefGoogle Scholar
  40. Duncan RR, Bramel-Cox PJ, Miller FR (1991) Contributions of introduced sorghum germplasm to hybrids development in the USA. In: Shands HL, Wiesner LE (eds) Use of plant introductions in the cultivar development, part 1. crop science society of America, vol 17. Special Publication, Madison, WI, USA, pp 69–101Google Scholar
  41. Durra BN, Stebbins GL (1952) A polyhaploid obtained from a hybrid derivation of S. halepense × S. vulgare var. sudanense. Genetics 37:369–374Google Scholar
  42. Dusseau A (1945) Les effets de la tetraploidie chez le sorgho sucrier. Compt Rend Acad Sci Paris 221:115–116Google Scholar
  43. Dweikat I (2005) A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor, and the common Johnsongrass weed Sorghum halepense. Mol Breed 16:93–101CrossRefGoogle Scholar
  44. Endrizzi JE (1957) Cytological studies in some species and hybrids in the Eu-sorghums. Bot Gaz 119:1–10CrossRefGoogle Scholar
  45. Endrizzi JE, Morgan DT Jr (1955) Chromosomal interchanges and evidence for duplication. J Hered 46:201–208CrossRefGoogle Scholar
  46. Erichsen AW, Ross JG (1957) A triploid derived from a selfed haploid sorghum plant. Crop Sci 3:99–100CrossRefGoogle Scholar
  47. Erichsen AW, Ross JG (1963) Irregularities at microsporogenesis in colchicine-induced male sterile mutants in Sorghum vulgare Pers. Crop Sci 3:481–483CrossRefGoogle Scholar
  48. Franzmann BA, Hardy AT (1996) Testing the host status of Australian indigenous sorghums for the sorghum midge. In: Foale MA, Henzell RG, Kneip JF (eds) Proceedings of the third Australian sorghum conference). Tamworth, NSW, Australia, pp 365–367Google Scholar
  49. Gaines EF, Aase HC (1926) A haploid wheat plant. Am J Bot 13:373–385CrossRefGoogle Scholar
  50. Garber ED (1944) A cytological study of the genus sorghum; subsections para-sorghum and Eu-sorgum. Am Nat 78:89CrossRefGoogle Scholar
  51. Garber ED (1948) A reciprocal translocation in sorghum versicolor Andress. Am J Bot 35:295–297CrossRefGoogle Scholar
  52. Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–362Google Scholar
  53. Garber ED (1954) Cytotaxonomic studies in the genus sorghum. III. The polyploid species of the subgenera para-sorghum and stiposorghum. Bot Gaz 115:336–342CrossRefGoogle Scholar
  54. Garber ED, Snyder LA (1951) Cytotaxonomic studies in the genus sorghum. II. Two new species from Australia. Madrona 11:6–10Google Scholar
  55. Gardner RC, Howarth AJ, Hahn P, Brownluedi M, Shepherd RJ, Messing J (1981) The complete nucleotide-sequence of an infectious clone of cauliflower mosaic-virus by M13MP7 shotgun sequencing. Nucleic Acids Res 9:2871–2888PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gill JR, Rooney WL, Klein PE (2014) Effect of humidity on intergeneric pollinations of iap (inhibition of Alien Pollen) sorghum [Sorghum bicolor (L.) Moench]. Euphytica 198:381–387CrossRefGoogle Scholar
  57. Gomez MI, Islam-Faridi MN, Woo SS, Schertz KF, Jr Czeschin, Wing RA, Stelly DM, Price HJ (1997) FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40:475–478PubMedCrossRefGoogle Scholar
  58. Gomez M, Islam-Faridi MN, Zwick M, Czeschin DG Jr, Hart GE, Wing RA, DM Stelly, Price HJ (1998) Tetraploid nature of Sorghum bicolor (L.). J Hered 89:188–190CrossRefGoogle Scholar
  59. Gu MH, Ma TH, Liang GH (1984) Karyotype analysis of seven species in the genus Sorghum. J Hered 75:196–202CrossRefGoogle Scholar
  60. Hackel E (1889) Andropogoneae. In: de Candolle A (ed) Monographie phanerogamarum, vol 6. Masson, Paris, France, pp 1–716Google Scholar
  61. Hadley HH (1953a) Cytological relationship between Sorghum vulgare and S. halepense. Agron J 45:139–143CrossRefGoogle Scholar
  62. Hadley HH (1953b) Cytological relationships between Sorghum vilgare and S. halepense. Agron J 45:139–143CrossRefGoogle Scholar
  63. Hadley HH (1958) Chromosome numbers, fertility and rhizome expression of hybrids between grain sorghum and Johnsongrass. Agron J 50:278–282CrossRefGoogle Scholar
  64. Hadley HH, Mahan JL (1956) The cytogenetic behavour of the progeny from a backcross (Sorghum vulgare × S. helepense × S. vulgare). Agron J 48:102–106CrossRefGoogle Scholar
  65. Haeckel (1885) Engler’s bot. Jahrab VII:115–126Google Scholar
  66. Haensel HD (1960) Responses of experimental 3, a sorghum variety, to gamma radiation and colchicin. MS Thesis South Dakota State College, College Station, South Dakota, USAGoogle Scholar
  67. Hanna WW, Schertz KF (1970) Inheritance and trisome linkage of seedling characters in Sorghum bicolor (L.) Moench. Crop Sci 10:441–443CrossRefGoogle Scholar
  68. Hanna WW, Schertz KF (1971) Trisome identification in Sorghum bicolor (L.) Moench by observing progeny of triploid × translocation stocks. Can J Genet Cytol 13:105–109CrossRefGoogle Scholar
  69. Harlan JR (1965) The possible role of weed races in the evolution of cultivated plants. Euphytica 14:173–176CrossRefGoogle Scholar
  70. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12(2):172–176CrossRefGoogle Scholar
  71. Harris KM (1976) The sorghum midge. Ann Appl Biol 64:114–118CrossRefGoogle Scholar
  72. Hodnett GL, Burson BL, Rooney WL, Dillon SL, Price HJ (2005) Pollen-pistil interactions result in reproductive isolation between sorghum bicolor and divergent Sorghum species. Crop Sci 45:1403–1409CrossRefGoogle Scholar
  73. Hodnett GL, Hale AL, Packer DJ, Stelly DM, Silva JD, Rooney WL (2010) Elimination of a reproductive barrier facilitates intergeneric hybridization of Sorghum bicolor and Saccharum. Crop Sci 50:1188–1195CrossRefGoogle Scholar
  74. Huang CC, Ross JG, Haensel HD (1963) Reciprocal translocation in sorghum vulgare. Can J Genet Cytol 5:227–232CrossRefGoogle Scholar
  75. Huelgas VC, Lawrence P, Adkins SW, Mufti MU, Godwin ID (1996) Utilization of the Australian native species for sorghum improvement. Proceedings of the 3rd Australian sorghum conference. Australian Institute of Agricultural Sciences, Melbourne, Australia, pp 369–375Google Scholar
  76. Huskins CL, Smith SG (1932) A cytological study of the genus sorghum Pers. I. The somatic chromosomes. J Genet 25:241–250CrossRefGoogle Scholar
  77. Huskins CL, Smith SG (1934) A cytological study of the genus sorghum Pers. II. The meiotic chromosomes. J Genet 28:387–395CrossRefGoogle Scholar
  78. Islam-Faridi MN, Childs KL, Klein PE, Hodnett MA, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosome I: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353PubMedPubMedCentralGoogle Scholar
  79. Janaki-Ammal EK (1939) Supernumerary chromosomes in para-sorghum. Curr Sci 8:210–211Google Scholar
  80. Janaki-Ammal EK (1940) Chromosome diminution in a plant. Nature 146:839–840CrossRefGoogle Scholar
  81. Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996a) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996b) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360CrossRefGoogle Scholar
  84. Kamala V, Sharma HC, Manohar Rao D, Varaprasad KS, Bramel PJ (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly Atherigona soccata. Plant Breed 28:137–142CrossRefGoogle Scholar
  85. Kamala V, Sharma HC, Manohar Rao D, Varaprasad KS, Bramel PJ, Chandra S (2012) Interactions of spotted stem borer Chilo partellus with wild relatives of sorghum. Plant Breed 131:511–521CrossRefGoogle Scholar
  86. Kamala V, Muraya M, Dwivedi SL, Upadhyaya HD (2015) Wild sorghums—their potential use in crop improvement. In: Wang YH, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Talor & Francis Group, Boca Raton (USA), London (UK), New York (USA), pp 56–89Google Scholar
  87. Karper RE (1930) Inheritance in grain sorghum. Texas Agric Exp Sta Annu Rep 43:48–51Google Scholar
  88. Karper RE, Chisholm AT (1936) Chromosome numbers in sorghum. Am J Bot 23:369–374CrossRefGoogle Scholar
  89. Karper RE, Stephens JC (1936) Floral abnormalities in sorghum. J Hered 27:183Google Scholar
  90. Kellogg EA (2013) Phylogenetic relationships of Saccharinae and Sorghinae. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, USA, pp 3–21CrossRefGoogle Scholar
  91. Keng YL (1939) The gross morphology of Andropogoneae. Sinensis 10:274–343Google Scholar
  92. Khan ZR, Pickett JA, Berg JVD, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962CrossRefGoogle Scholar
  93. Kidd HJ (1952) Haploid and triploid sorghum. J Hered 43:204CrossRefGoogle Scholar
  94. Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412PubMedCrossRefGoogle Scholar
  95. Kim J-S, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE (2005a) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchomatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005b) Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics 169:955–965PubMedPubMedCentralCrossRefGoogle Scholar
  97. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Mosishige DT, Schlueter SD, Childs KL, Ale M (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807PubMedPubMedCentralCrossRefGoogle Scholar
  98. Krishnaswamy N, Chandrasekharan P, Meenakshi K (1958) Abnormal meiosis in the grain sorghums. II. The cytogenetics of the progeny of the desynaptic plant—2. Cytologia 23:251–269CrossRefGoogle Scholar
  99. Kuhlman LC (2007) Sorghum introgression breeding utilizing S. macrospermum. PhD Thesis, Plant Breeding, Graduate Studies of Texas A&M University, USAGoogle Scholar
  100. Kuhlman LC, Rooney WL (2011) Registration of Tx3361 sorghum germplasm. J Plant Regis 5:133–134CrossRefGoogle Scholar
  101. Kuhlman LC, Burson BL, Klein PE, Klein RR, Stelly DM, Price HJ, Rooney WL (2008) Genetic recombination in S. bicolor × S. macrospermum interspecific hybrids. Genome 51:749–756PubMedCrossRefGoogle Scholar
  102. Kuhlman LC, Burson BL, Stelly DM, Klein PE, Klein RR, Price HJ, Rooney WL (2010) Early-generation germplasm introgression from Sorghum macrospermum into sorghum (S. bicolor). Genome 53:419–429PubMedCrossRefGoogle Scholar
  103. Laubscher FX (1945) A genetic study of sorghum relationships. Dept Agri (Union of South Africa) Sci Bull 242Google Scholar
  104. Laurie D, Bennett MD (1989) Genetic variation in sorghum for the inhibition of maize pollen tube growth. Ann Bot 64:675–681CrossRefGoogle Scholar
  105. Lazarides M, Hacker JB, Andrew MH (1991) Taxonomy cytology and ecology of indigenous Australian sorghums, Sorghum moench, Adropogoneae, Poaceae. Austr Syst Bot 4:591–636CrossRefGoogle Scholar
  106. Lessman KJ (1965) Chromosome analysis in sorghum, Sorghum vulgare Pers. Crop Sci 5:361–362CrossRefGoogle Scholar
  107. Levan A (1941) Syncyte formation in pollent mother cells of haploid Phleum protense. Hereditas 27:243–252CrossRefGoogle Scholar
  108. Lin PS, Ross JG (1969) Morphology and cytological behavior of aneuploids of Sorghum bicolor. Can J Genet Cytol 11:908–918CrossRefGoogle Scholar
  109. Lin YR, Zhu L, Ren S, Yang J, Schertz KF, Paterson AH (1999) A Sorghum propinquum BAC library, suitable for cloning genes associated with loss-of-function mutations during crop domestication. Mol Breed 5:511–520CrossRefGoogle Scholar
  110. Lin Y-R, Draye X, Qian X, Ren S, Zhu L-H, Tomkins J, Wing R, Li Z, Paterson AH (2000) Locus-specific contig assembly in highly-duplicated genomes, using the BAC-RF method. Nucleic Acids Res 28:e23PubMedPubMedCentralCrossRefGoogle Scholar
  111. Linnaeus C (1753) Species plantarum 1047Google Scholar
  112. Longley AE (1932) Chromosomes in grass sorghum. J Agric Res 44:317–321Google Scholar
  113. Lonkar SG, Borikar ST (1994) Inheritance of A1 and A2 cytoplasmic genetic male sterility in sorghum. J Maharashtra Agric Univ 19:450Google Scholar
  114. Luo YW, Yen XC, Zhang GY, Liang GH (1992) Agronomic traits and chromosome behavior of autotetraploid sorghums. Plant Breed 109:46–53CrossRefGoogle Scholar
  115. Magoon ML, Shambulingappa KG (1961) Karyomorphology of Sorghum propinquum and its bearing on the origin of the 40-chromosome sorghum. Chromosoma 42:460–465CrossRefGoogle Scholar
  116. Magoon ML, Tayyab MA (1968) Cytogenetic studies in Eu-sorghum. J Genet 60:52–67CrossRefGoogle Scholar
  117. Magoon ML, Ramanna MS, Shambulingappa KG (1961) Desynapsis and spontaneous chromosome breakage in Sorghum purpureo-sericeum. Indian J Genet 21:87–97Google Scholar
  118. Magoon ML, Tayyab MA, Sadasivaiah RS (1967) A cytomorphological study of the genus Sorghum. Bot Mag Tokyo 80:427–439CrossRefGoogle Scholar
  119. Malm NR (1967) Female sterility in grain sorghum involving linked genes. Crop Sci 7:548CrossRefGoogle Scholar
  120. Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10 (
  121. Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839CrossRefGoogle Scholar
  122. Moench C (1794) Methodus plantas horti botanici. Et Agri 207Google Scholar
  123. Morakinya JA, Olorode O (1988) Cytogenetic studies in Sorghum bicolor (L.) Moench. Cytologia 53:653–658CrossRefGoogle Scholar
  124. Morden CW, Doebley J, Schertz KF (1990) Allozyme variation among the spontaneous species of sorghum section sorghum (poaceae). Theor Appl Genet 80:296–304PubMedCrossRefGoogle Scholar
  125. Mullet J, Stelly D, Rooney W, Gould JM (2010) Novel biofuel/biofeedstocks to redefine bioenergy production economics.…/Tx_AgriLife_Research_Biofuel.p
  126. Munoz JM, Webster OJ, Morris RM (1963) Studies on triploids and their progenies in sorghum. Agron Abstr 86Google Scholar
  127. Murty UR (1986) Effect of A2 cytoplasm on the inheritance of plant height in temperate × tropical sorghum crosses. Sorghum Newsl 29:77Google Scholar
  128. Murty UR, Gangadhar G (1990) Milo and non-milo sources of cytoplasm in Sorghum bicolor (L.) Moench. III. Genetics of fertility restoration. Cereal Res Commun 18:111–116Google Scholar
  129. Murty UR, Rao NGP (1974) Cytogenetics of sorghum. In: Kachroo P (ed) Advancing frontiers in cytogenetics in evolution and improvement of plants, proceedings of national seminar held at University of Kashmir, Oct 14–19, 1972. Hinclustan Publisher Delhi, IndiaGoogle Scholar
  130. Muyekho FN, Barrion AT, Khan ZR (2005) Host range for stemborers and associated natural enemies in different farming systems of Kenya. Insect Sci Appl 3:173–183Google Scholar
  131. Nair NV (1999) Production and cyto-morphological analysis of intergeneric hybrids of Sorghum × Saccharum. Euphytica 108:187–191CrossRefGoogle Scholar
  132. Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN, Mary S (2006) Characterization of intergeneric hybrids of saccharum using molecular markers. Genet Resour Crop Evol 53:163–169CrossRefGoogle Scholar
  133. Narayan KN (1961) Behaviour of colchicin induced polyploids in sorghum vulgare Pres and their crosses. MS Thesis A&M College of Texas, College Station, Texas, USAGoogle Scholar
  134. Ng’uni D, Geleta M, Gatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–480PubMedPubMedCentralCrossRefGoogle Scholar
  135. Pande S, Bock CH, Bandyopadhyay R, Narayana YD, Reddy BVS, Lenné JM, Jeger MJ (1997) Downy mildew of sorghum. ICRISAT, Patancheru, India, p 51Google Scholar
  136. Papathanasiou GA, Lessman KJ (1969) Use of cytoplasmic male sterility, compared to hand emasculation, and translocations for chromosome analysis in Sorghum vulgare Pers. Crop Sci 9:403–405CrossRefGoogle Scholar
  137. Parvatham G, Rangaswamy SRS (2004) Karyomorphological and phylogenetic studies in different species of Sorghum L Moench. Cytologia 69:301–305CrossRefGoogle Scholar
  138. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  139. Pi CP, Tsai S (1965) Trisomics of Sorghum vulgare. Sorghum Newsl 8:3–5Google Scholar
  140. Piper CV (1916) Forage plants and their culture. Macmillan, New York, USAGoogle Scholar
  141. Piper JK, Kulakow PA (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 and backcross generations of S. bicolor x S. halepense hybrids. Can J Bot 72:468–474CrossRefGoogle Scholar
  142. Poon NH and Wu HK (1967) Identification of involved chromosomes in trisomics of Sorghum vulgare Pers. J Agr Ass China 58(N.S.):18–32Google Scholar
  143. Price E, Ross WN (1955) The occurrence of trisomic and other aneuploids in a cross of triploid × diploid Sorgum vulgare. Agron J 47:591–592CrossRefGoogle Scholar
  144. Price E, Ross WN (1957) Cytological study of a triploid × diploid Sorgum vulgare Pers. Agron J 49:237–240CrossRefGoogle Scholar
  145. Price HJ, Hodnett GL, Burson BL, Dillon SL, Rooney WL (2005a) A Sorghum bicolor × S. macrospermum hybrid recovered by embryo rescue and culture. Aust J Bot 53:579–582CrossRefGoogle Scholar
  146. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005b) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227PubMedPubMedCentralCrossRefGoogle Scholar
  147. Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL (2006) Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Sci 46:2617–2622CrossRefGoogle Scholar
  148. Qian ZQ (1990) Discussions on the inheritance of A1 cytoplasmic male sterility and the establishment of differentiating line for restoring genotype in sorghum. Hereditas 12:11–12Google Scholar
  149. Qin C, Wei W, Sestras RE (2008) The phylogenetic analysis and identification of sorghum helepense and related species based on Chi-B partial sequence. Not Bot Hort Agrobot Cluj 36:55–58Google Scholar
  150. Qing Shan L, Ai Ping Jun, Yin Li Tuan, Yao Zhang Fu (2000) New grain sorghum cytoplasmic male-sterile line A2 V4 A and F1 hybrid Jinza No.12 for Northwest China. Int Sorghum Millets Newsl 41:31–32Google Scholar
  151. Quinby J (1981) Interaction of genes and cytoplasms in male sterility in sorghum. In: Proceedings of the annual corn and sorghum industry research conference American seed trade association, corn and sorghum division, corn and sorghum research conferenceGoogle Scholar
  152. Quinby JR, Karmer NW, Stephens JC, Lahr KA, Karper RE (1958) Grain sorghum production in texas. Texas Agr Exp Sta Bull 35:912Google Scholar
  153. Raman VS, Sankaran S (1979) Reproductive potential of polyploidy Sorghum as appraisal. Sorghum Newsletter 22:8–11Google Scholar
  154. Rao NK, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721CrossRefGoogle Scholar
  155. Raveendran M, Rangasamy SRS, Sentwil N (2000) Potential of interspecific hybridization for developing ratoonable forage sorghum. Indian J Genet 60:259–260Google Scholar
  156. Reddy VR (1958) On the differentiation of A and B chromosomes of Sorghum purpureo-sericeum, a Eu-sorghum. J Indian Bot Soc 37:279–289Google Scholar
  157. Reddy BVS, Prasad Rao KE (1992) Breeding new seed parents: Breeding non-milo restorer lines. Pages 63–64 in cereals program, ICRISAT annual report 1991, international crops research institute for the semi-arid tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, IndiaGoogle Scholar
  158. Reddy BVS, Ramesh S, Reddy PS, Ramaiah B (2007) Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 154:153–164CrossRefGoogle Scholar
  159. Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 44:2221–2229CrossRefGoogle Scholar
  160. Rooney WL (2000) Genetics and cytogenetics. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, histroy, technology, and production. John Wiley & Sons, Inc., New York, pp 261–307Google Scholar
  161. Ross JG, Chen CH (1962) Fertility differences in autotetraploid sorghum. Hereditas 48:324CrossRefGoogle Scholar
  162. Ross WM, Hackerott HL (1972) Registration of seven isocytoplasmic sorghum germplasm lines. Crop Sci 12:720–721CrossRefGoogle Scholar
  163. Salomon ES (1940) Sorghum sudanese (piper) stapf tetraploidie obtaenido por colchicina. Anal. Inst. Filotec Santa Catalina (Argentina) 2:13–16Google Scholar
  164. Sang Y, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species. Genome 43:918–922PubMedCrossRefGoogle Scholar
  165. Schertz KF (1962) Cytology, fertility and gross morphology of induced polyploids of Sorghum vulgare. Can J Genet Cytol 4:179–186CrossRefGoogle Scholar
  166. Schertz KF (1963) Chromosomal, morphological and fertility characteristics of haploids and their derivatives in Sorghum vulgare Pers. Crop Sci 3:445–447CrossRefGoogle Scholar
  167. Schertz KF (1966) Morphological and cytological characteristics of five trisomics of Sorghum vulgare Pers. Crop Sci 6:519–523CrossRefGoogle Scholar
  168. Schertz KF (1970a) Chromosome translocation set in Sorghum bicolor (L.) Moench. Crop Sci 10:329–332CrossRefGoogle Scholar
  169. Schertz KF (1970b) Chromosome translocation set in Sorghum bicolor (L.) Moench. Crop Sci 10:329–332CrossRefGoogle Scholar
  170. Schertz KF (1974) Morphological and cytological characteristics of five additional trisomics of Sorghum bicolor (L.) Moench. Crop Sci 14:106–109CrossRefGoogle Scholar
  171. Schertz KF (1994) Male-sterility in sorghum: its characteristics and importance. In: Witcombe JR, Duncan RR (eds) Use of molecular markers in sorghum and pearl millet breeding for developing countries. Proceedings of the international conference on genetics improvement, overseas development administration (ODA) plant sciences research conference, 29 March–1 April 1993, Norwich, UK, ODA, UK, pp 35–37Google Scholar
  172. Schertz KF, Ritchey JM (1978) Cytoplasmic genic male sterility systems in sorghum. Crop Sci 18:890–893CrossRefGoogle Scholar
  173. Schertz KF, Stephens JC (1965) Origin and occurrence of triploids of Sorghum vulgare Pers and their chromosomal and morphological characteristics. Crop Sci 5:514–516CrossRefGoogle Scholar
  174. Schlarbaum SE, Tsuchiya T (1981) Differential reactivity to staining in tree chromosomes. J Hered 72:62–63CrossRefGoogle Scholar
  175. Schulz-Schaeffer J (1980) Cytogenetics, Plants, Animals, Humans. Springer-Verlag, New York, USA, p 436Google Scholar
  176. Schurtz KF (1963) Chromosomal, morphological and fertility characteristics of haploids and their derivatives in Sorghum vulgare Pers. Crop Sci 3:444–447Google Scholar
  177. Schurtz KF (1966) Morphological and cytological characteristics of five trisomics of Sorghum vulgare Pers. Crop Sci 6:519–523CrossRefGoogle Scholar
  178. Sengupta SP, Weibel DE (1971) Cytological study of the hybrids of Sorghum halepens (L.) Pers. Proc Okla Acad Sci 51:56–60Google Scholar
  179. Sharma AK, Bhattacharjee D (1957) Chromosome studies in sorghum. Cytologia 22:287–311CrossRefGoogle Scholar
  180. Sharma HC, Franzmann BA (2001) Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J Appl Entomol 125:109–114CrossRefGoogle Scholar
  181. Sharma HC, Reddy BVS, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma R, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum: present status and need for future research. Int Sorghum Millets Newsl 46:36–43Google Scholar
  182. Singh SP, Hadley HH (1961) Pollen abortion in cytoplasmic male sterile sorghum. Crop Sci 1:430–432CrossRefGoogle Scholar
  183. Singh RJ, Tsuchiya T (1982) An improved Giemsa N banding technique for the identification of barley chromosomes. J Hered 73:227–229CrossRefGoogle Scholar
  184. Snowden JD (1935) A classification of the cultivated Sorghum. Kew Bull XXI:221–254Google Scholar
  185. Snowden JD (1936) The cultivated races of sorghum. London, UKGoogle Scholar
  186. Snowden JD (1955) The wild fodder sorghums of the section eu-sorghum. J Linn Soc Lond 55:191–260CrossRefGoogle Scholar
  187. Spangler RE (2003) Taxonomy of sarga, sorghum and vacoparis (Poaceae: Andropogoneae). Austr Syst Bot 16:279–299CrossRefGoogle Scholar
  188. Spangler RE, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281CrossRefGoogle Scholar
  189. Stapf O (1919) Gramineae in prain D, flora of tropical Africa, vol 9. Reeve, London, UKGoogle Scholar
  190. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York, USAGoogle Scholar
  191. Stephens JC (1937) Male sterility in sorghum: its possible utilization in production of hybrid seed. J Am Soc Agron 29:690–696CrossRefGoogle Scholar
  192. Stephens JC, Holland PF (1954) Cytoplasmic male sterility for hybrid sorghum seed production. Agron J 46:20–23Google Scholar
  193. Sun Y, Skinner D, Liang G, Hulber S (1994) Phylogenetic analysis of sorghum and related texa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32PubMedCrossRefGoogle Scholar
  194. Tang H, Liang GH (1988) The genomic relationship between cultivated sorghum [Sorghum bicolor (L.) Moench] and Johnsongrass [S. halepense (L.) Pers.]: a re-evaluation. Theor Appl Genet 76(2):277–284Google Scholar
  195. Venkateswarulu J, Reddi VR (1968) Cytological studies of sorghum trisomics. J Hered 59:179–182CrossRefGoogle Scholar
  196. Vinall HN (1926) Mem Hort Soc Newyork III:75–77Google Scholar
  197. Warmke HE, Overman MA (1972a) Cytoplasmic male sterility in sorghum. I. Callose behaviour in fertile and sterile anthers. J Hered 63:103–108CrossRefGoogle Scholar
  198. Warmke HE, Overman MA (1972b) Tapetal behaviour in fertile and sterile anthers. J Hered 63:227–233CrossRefGoogle Scholar
  199. Webster OJ (1965) Genetic studies in Sorghum vulgere (Pers.). Crop Sci 5:207–210CrossRefGoogle Scholar
  200. Webster OJ, Singh SP (1964) Breeding behavior and histological structure of non-dehiscent anther character in Sorghum vulgare Pers. Crop Sci 4:656–658CrossRefGoogle Scholar
  201. Weston LA, Alsaadawi IS, Baerson SR (2013) Sorghum allelopathy from ecosystem to molecule. J Chem Ecol 39:625–637Google Scholar
  202. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130PubMedPubMedCentralGoogle Scholar
  203. Whitmire DK (2011) Wide hybridization, genomic, and overwintering characterization of high-biomass sorghum spp. feedstocks. MS Thesis in Plant Breeding, Texas A&M University, USA, pp 77Google Scholar
  204. Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of sorghum bicolor. Nucleic Acids Res 22:4922–4931PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wooten DR (2001) The use of Sorghum propinquum to enhance agronomic traits in sorghum. Master’s Thesis, Texas A&M University, College Station, TX, USAGoogle Scholar
  206. Worstell JV, Kidd HJ, Schertz KF (1984) Relationships among male sterility inducing cytoplasms of sorghum. Crop Sci 24:186–189CrossRefGoogle Scholar
  207. Wu TP (1980) Cyto genetic studies of the B chromosomes in Sorghum nitidum. In: Proceedings of the national science council of Republic of China, pp 297–306Google Scholar
  208. Wu TP (1982) Comparative karyomorphology of two species in Parasorghum. Proc Natl Sci Counc (Taiwan) Part B. 6:319–325Google Scholar
  209. Wu TP (1984) B chromosomes in Sorghum purpureosericeum. Proc Natl Sci Counc Repub China 8:198–209Google Scholar
  210. Wu TP (1992) B-chromosomes in Sorghum stipoideum. Heredity 68:457–463CrossRefGoogle Scholar
  211. Yu H, Liang GH, Kofoid KD (1991) Analysis of C-banding chromosome patterns of sorghum. Crop Sci 31:1524–1527CrossRefGoogle Scholar
  212. Zwick MS, Islam-Faridi MN, Czeschin DG Jr, Wing RA, Hart GE, Stelly DM, Price HJ (1998) Physical mapping of liguleless linkage group in sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148:1983–1992PubMedPubMedCentralGoogle Scholar
  213. Zwick MS, Islam-Faridi MN, Zhang HB, Hodnett GL, Gomez MI, Kim JS, Price HJ, Stelly DM (2000) Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot 87:1757–1764PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sujay Rakshit
    • 1
    Email author
  • K. N. Ganapathy
    • 1
  • K. B. R. S. Visarada
    • 1
  1. 1.ICAR-Indian Institute of Millets ResearchHyderabadIndia

Personalised recommendations