Botany, Taxonomy and Breeding

  • Are Ashok KumarEmail author
Part of the Compendium of Plant Genomes book series (CPG)


Sorghum is one of the most important cereal crops grown in the semi-arid tropics (SAT) of Asia, Africa, and the Americas for its food, feed, fodder, and fuel value. Sorghum production is constrained by several biotic and abiotic stresses. Genetic enhancement of sorghum for grain and stover yield, nutritional quality, and plant defense traits (abiotic and biotic) that stabilize the crop performance requires thorough knowledge of crop botany, diversity, and genetics so as to deploy appropriate crop-breeding strategies. Sorghum is one of the well-understood species in terms of botany, floral biology, and genetic diversity. Both cultivated and wild forms are available in sorghum, which are well distributed in Africa, its center of origin, and in the rest of the world. This chapter describes the botany, floral biology, and classification of sorghum and their implications to the breeding methods to be used. Also this chapter presents how the understanding of botany and taxonomy can be effectively used for improving sorghum yield and nutritional quality traits.


Sorghum Yield and quality Botany Floral biology Taxonomy Racial distribution Breeding 


  1. Allard RW (1960) Principles of plant breeding, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Aruna C, Audilakshmi S (2008) Reproductive biology and breeding behavior of sorghum. In: Reddy BVS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum Improvement in the New Millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, pp 28–30Google Scholar
  3. Ashok Kumar A, Reddy Belum VS, Ramaiah B, Sahrawat KL, Pfeiffer WH (2012) Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. Eur J Plant Sci Biotechnol 6(Spl Iss 1):66–70 (Print ISSN 1752-3842)Google Scholar
  4. Ashok Kumar A, Anuradha K, Ramaiah B (2013a) Increasing grain Fe and Zn concentration in sorghum: progress and way forward. J SAT Agric Res 11Google Scholar
  5. Ashok Kumar A, Belum VSR, Ramaiah B, Sahrawat KL, Wolfgang HP (2013b) Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crops Res 146:86–95Google Scholar
  6. Ashok Kumar A, Anuradha K, Ramaiah B, Frederick H, Rattunde W, Virk P, Wolfgang HP, Grando S (2015) Recent advances in sorghum biofortification research. Plant Breeding Rev 39:89–124Google Scholar
  7. Audilakshmi S, Aruna C (2008) Breeding methods in sorghum. In: Reddy BVS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, pp 28–30Google Scholar
  8. Carrie TS, Ma JM, Higgins RH, Brown PJ (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. 14(6):R68Google Scholar
  9. Celarier RP (1959) Cytotaxonomy of the andropogonea. III. Sub-tribe Sorgheae, genus, Sorghum. Cytologia 23:395–418CrossRefGoogle Scholar
  10. Clayton WD (1961) Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorghum adans (Gramineae). Taxonomy 10:242CrossRefGoogle Scholar
  11. Clayton WD, Renvoize SA (eds) (1986) Genera graminum grasses of the World, Kew Bulletin Addition Series XIII. Royal Botanic Gardens, Kew, London, pp 338–345Google Scholar
  12. Conner AB, Karper RE (1927) Hybrid vigor in sorghum. Texas Experiment Stations Bulletin no 359. Texas A&M University, TexasGoogle Scholar
  13. Dahlberg JA (2000) Classification and characterization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum, origin, history, technology and production, Wiley Series in Crop Science, Wiley, New York, pp 99–130Google Scholar
  14. Dahlberg JA, Burke JJ, Rosenow DT (2004) Development of a sorghum core collection: refinement and evaluation of a subset from Sudan. Econ Bot 58(4):556–567CrossRefGoogle Scholar
  15. De Mesa-Stonestreet NJ, Alavi S, Bean SR (2010) Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J Food Sci 75:90–104CrossRefGoogle Scholar
  16. de Wet JMJ, Harlan JR (1971) The origin and domestication of sorghum bicolor. Econ Bot 25:128–135CrossRefGoogle Scholar
  17. de Wet JMJ, Harlan JR (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172CrossRefGoogle Scholar
  18. de Wet JMJ, Huckabay JP (1967) The origin of sorghum bicolor. II. Distribution and domestication. Evolution 211:787–802CrossRefGoogle Scholar
  19. Doggett H (1988) Sorghum, 2nd edn. Tropical Agricultural Series. Longman Scientific, EssexGoogle Scholar
  20. FAO (Food and Agriculture Organization) (1960–1996) FAO production year book 1960–1996. Food and Agriculture Organization of United Nations, RomeGoogle Scholar
  21. Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361Google Scholar
  22. Gebrekidan B (1981) Utilization of germplasm in sorghum improvement. In: House LR, Mughogho LK, Peacock JM (eds) Proceedings of the international symposium on sorghum, 2–7 November 1981, ICRISAT, Patancheru, Andhra Pradesh, India, pp 335–345Google Scholar
  23. Houk RS (1986) Mass spectrometry of inductively coupled plasmas. Anal Chem 58:97A–105AGoogle Scholar
  24. House LR (1980) A guide to sorghum breeding. International Crops Research Institute for the Semi-Arid Tropics, PatancheruGoogle Scholar
  25. House LR, Verma BN, Ejeta G, Rana BS, Kapran I, Obilana AB, Reddy BVS (1997) Developing countries breeding and potential of hybrid sorghum. In: Proceedings of the international conference on genetic improvement of sorghum and pearl millet, Lubbock, TX, USA, 22–27 Sep 1996. Lincoln, Nebraska, USA. Collaborative Research Support Program on Sorghum and Pearl millet 97-5, pp 84–96Google Scholar
  26. IBPGR/ICRISAT (1980) Sorghum descriptors. IBPGR, RomeGoogle Scholar
  27. Jambunathan R, Rao NS, Gurtu S (1983) Rapid methods for estimating protein and lysine in sorghum (Sorghum bicolor (L.)Moench). Cereal Chem 60(3):192–194Google Scholar
  28. Johnson RM, Craney CE (1971) Rapid biuret method for protein content in grains. Cereal Chem 48:276Google Scholar
  29. Kumar AA, Reddy BVS, Ramaiah B, Reddy PS, Sahrawat KL, Upadhyaya HD (2009) Genetic variability and plant character association of grain Fe and Zn in selected core collections of sorghum germplasm and breeding lines. J SAT Agric Res (
  30. Kumar AA, Reddy BVS, Sharma HC, Hash CT, Srinivasa Rao P, Ramaiah B, Reddy PS (2011) Recent advances in sorghum genetic enhancement research at ICRISAT. Am J Plant Sci 2:589–600Google Scholar
  31. Kumar AA, Reddy BVS, Ramaiah B, Sahrawat KL (2012) Wolfgang HP (2012) Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. Eur J Plant Sci Biotechnol 6(1):66–70Google Scholar
  32. Maiti R (1996) Sorghum science. New Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 352 pGoogle Scholar
  33. Nagy Z, Tuba Z, Zsoldus F, Erdei L (1995) CO2 exchange and water retention responses of sorghum and maize during water and salt stress. J Plant Physiol 145:539–544CrossRefGoogle Scholar
  34. Parthasarathy Rao P, Birthal BS, Reddy BVS, Rai KN, Ramesh S (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. Int Sorghum Millets Newsl 47:93–96Google Scholar
  35. Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants—molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (l) pers. Proc Natl Acad Sci USA 92:6127–6131CrossRefPubMedPubMedCentralGoogle Scholar
  36. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  37. Quinby JR (1974) Sorghum improvement and the genetics of growth. A&M University Press, College Station, p 122Google Scholar
  38. Quinby JR, Karper RE (1947) The effect of short photoperiod on sorghum varieties and first generation hybrids. J Agric Res 75:295–300Google Scholar
  39. Rakshit S, Hariprasanna K, Gomashe S, Ganapathy KN, Das IK, Ramana OV, Dhandapani A, Patil JV (2014) Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci 54(4):1571–1584Google Scholar
  40. Ramesh B, Hudda MPS (1994) Study on variability and associations involving protein content, amino acids and grain yield in sorghum. Indian J Genet Plant Breed 54(1):37–44Google Scholar
  41. Rao SS, Seetharama N, Kiran Kumar KA, Vanderlip RL (2004) Characterization of sorghum growth stages. NRCS Bulletin Series no.14. National Research Centre for Sorghum, Rajendranagar, Hyderabad, Andhra Pradesh, India, 20 pGoogle Scholar
  42. Reddy Belum VS, HC Sharma, RP Thakur, S Ramesh, Fred Rattunde, Mgonja M (2006) Sorghum hybrid parents research at ICRISAT: retrospect and prospects. SAT e-journal 2(1):1–24. ( Scholar
  43. Reddy BVS, Kumar AA Reddy PS (2010) Recent advances in sorghum improvement research at ICRISAT. Kasetsart J (Nat Sci) 44:499–506Google Scholar
  44. Reddy BVS, Ramesh S, Longvah T et al (2005) Prospects of breeding for micronutrients and carotene-dense sorghums. Int Sorghum Millets Newsl 46:10–14Google Scholar
  45. Reddy BVS, Sharma HC, Thakur RP, Ramesh S, Kumar AA (2007) Characterization of ICRISAT-Bred sorghum hybrid parents. Int Sorghum Millets Newslett 48:1–123Google Scholar
  46. Reddy BVS, Ramesh S, Kumar AA, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. Bioenergy Res 1:248–258CrossRefGoogle Scholar
  47. Reddy BVS, Ramesh S, Reddy PS, Kumar AA (2009) Genetic enhancement for drought tolerance in sorghum. Plant Breed Rev 31:189–222Google Scholar
  48. Reddy BVS, Kumar AA, Ramesh S, Reddy PS (2011) Breeding sorghum for coping with climate change. In: Yadav SS, Redden B, Hatfield JL, Lotze-Campen H (eds) Crop adaptation to climate change. Wiley, Iowa, USA, pp 326–339Google Scholar
  49. Rosenow DT, Dalhberg JA (2000) Collection, conversion and utilization of sorghum. In: Smith CW, Frederiksen AR (eds) Sorghum, origin, history, technology and production. Wiley Series in Crop Science. Wiley, New York, pp 309–328Google Scholar
  50. Sharma D (1988) Concepts and methods. In: Chopra VL (ed) Plant breeding. Oxford & IBH Publishing Co. Pvt. Ltd., pp. 21–74Google Scholar
  51. Stephens JC, Holland PF (1954a) Cytoplasmic male sterility for hybrid sorghum seed production. Agron J 46:20–23CrossRefGoogle Scholar
  52. Stephens JC, Holland RF (1954b) Cytoplasmic male-sterility for hybrid sorghum seed production. Agron J 46:20–23CrossRefGoogle Scholar
  53. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49(5):1769–1780CrossRefGoogle Scholar
  54. Upadhyaya HD, Sharma S, Dwivedi SL, Singh SK (2014) Sorghum genetic resources: conservation and diversity assessment for enhanced utilization in sorghum improvement. In: Wang Y-H, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Taylor & Francis Group, Boca Raton (USA), London (UK), New York (USA), pp 28–55. ISBN: 978-1-4822-1008-8Google Scholar
  55. Vanderlip RL, Reeves HE (1972) Growth stages of sorghum. Agron J 64:13–16CrossRefGoogle Scholar
  56. Virupaksha TK, Sastry LVS (1968) Protein content and amino acid composition of some varieties of grain sorghum. J Agric Food Chem 16(2):199–203CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Research Program—AsiaInternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia

Personalised recommendations