Sorghum-Associated Bacterial Communities—Genomics and Research Perspectives

  • Mandira KocharEmail author
  • Pushplata Singh
Part of the Compendium of Plant Genomes book series (CPG)


Sorghum is known to be intolerant to soil acidity and grows best in the pH range of 5.7–6.4. Consequently, its associations with metabolically versatile plant growth promoting bacterial strains in the rhizosphere are likely to be helpful as they will be able to support the growth of the host plant even under varying rhizospheric conditions by improving root growth. The mechanism of the phytohormones crosstalking with each other and integration of the signaling pathways have been deciphered to a large extent in plants, yet the interrelationship between the bacterial plant growth regulators has not yet been unraveled. In-depth understanding of sorghum genomics is necessary for improving sorghum composition and agronomic behavior. Along with this, innovative strategies and genomics and transcriptomics studies can be designed to understand the microbial communities associated with sorghum. These offer an environmentally sustainable approach to increase sorghum production and health.


Rhizosphere Phytohormones Metagenomics 


  1. Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front. Plant Sci 14:141Google Scholar
  2. Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperature. Biol Fert Soils 46:45–55CrossRefGoogle Scholar
  3. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alsaadawi IS (1988) Biological suppression of nitrification by selected cultivars of Helianthus annuus L. J Chem Ecol 14:733–741CrossRefPubMedGoogle Scholar
  5. Bai Y, Aoust FD, Smith DL, Driscoll BT (2002) Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238CrossRefPubMedGoogle Scholar
  6. Bailey JK, Schweitzer JA, Ubeda F, Koricheva J, LeRoy CJ, Madritch MD et al (2009) From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Philos Trans Roy Soc Lond B Biol Sci 364:1607–1616CrossRefGoogle Scholar
  7. Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770CrossRefGoogle Scholar
  8. Bashan Y, de-Bashan Luz E, Prabhu S, Hernandez J (2013) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33Google Scholar
  9. Begum AS, Basha SA, Raghavendra G, Kumar MVN, Singh Y, Patil JV, Tanemura Y, Fujimoto Y (2014) Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on Sorghum grain mold fungi. Chem Biodiver 11:92–100CrossRefGoogle Scholar
  10. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefPubMedGoogle Scholar
  11. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350CrossRefPubMedGoogle Scholar
  12. Boudsocq S, Lata JC, Mathieu J, Abbadie L, Barot S (2009) Modelling approach toanalyse the effects of nitrification inhibition on primary production. Funct Ecol 23:220–230CrossRefGoogle Scholar
  13. Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263PubMedPubMedCentralGoogle Scholar
  14. Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999a) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  15. Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999b) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  16. Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M (2000) Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfaalfa cultivars in Italian soils. Appl Environ Microbiol 66:4785–4789CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carvalhais LC, Paul DG, Fan B, Fedoseyenko D, Kierul K, Becker A, Wiren NV, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8:e68555. doi: 10.1371/journal.pone.0068555 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coelho MRR, Mota FF, Carneiro NP, Marriel IE, Paiva E, Rosado AS, Seldin L (2007) Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer accessed by rpoB-based PCR DGGE and sequencing analysis. J Microbiol Biotechnol 17:753–760PubMedGoogle Scholar
  19. Coelho MRR, de Vos M, Carneiro NP, Marriel IE, Paiva E, Seldi L (2008) Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett 279:15–22CrossRefPubMedGoogle Scholar
  20. Coelho MRR, Carneiro NP, Marriel IE, Seldin L (2009a) Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum (Sorghum bicolor) sown in Cerrado soil. Lett Appl Microbiol 48:611–617CrossRefPubMedGoogle Scholar
  21. Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG (2009b) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42:48–53CrossRefGoogle Scholar
  22. Compant S, Duffy B, Nowak J, Clemet C, Barka EA (2005) Use of plant-growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959CrossRefPubMedPubMedCentralGoogle Scholar
  23. Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083CrossRefPubMedGoogle Scholar
  24. Das IK, Indira S, Annapurna A, Prabhakar Seetharama N (2008) Biocontrol of charcoal rot in sorghum by fluorescent pseudomonads associated with the rhizosphere. Crop Protec 27:1407–1414CrossRefGoogle Scholar
  25. Dayan FE, Kagan IA, Rimando AM (2003) Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retro- biosynthetic NMR analysis. J Biol Chem 278:28607–28611CrossRefPubMedGoogle Scholar
  26. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile drained Mid-Western soils. Agron J 94:153–171CrossRefGoogle Scholar
  27. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999a) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  28. Dobbelaere S, Croonenborghs A, Thys A, VandeBroek A, Vanderleyden J (1999b) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162CrossRefGoogle Scholar
  29. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  30. Erickson J, Schott D, Reverri T, Muhsin W, Ruttledge T (2001) GC-MS analysis of hydrophobic root exudates of sorghum and implications on the parasitic plant Striga asiatica. J Agri Food Chem 49:5537–5542CrossRefGoogle Scholar
  31. Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wirén N, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 21:116CrossRefGoogle Scholar
  32. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  33. Funnel-Harris DL, Sattler SE, Pedersen JF (2013) Characterization of fluorescent Pseudomonas spp. associated with roots and soil of two sorghum genotypes. Eur J Plant Pathol 136:469–481CrossRefGoogle Scholar
  34. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892CrossRefPubMedGoogle Scholar
  35. García de Salamone I, Döbereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fert Soils 21:193–196CrossRefGoogle Scholar
  36. García de Salamone I E, Funes JM, Salvo DLP et al (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204Google Scholar
  37. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  38. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, vol 2012, Article ID 963401Google Scholar
  39. Golubev SN, Muratova AY, Wittenmayer L, Bondarenkova AD, Hirche F, Matora LY, Merbach W, Turkovskaya OV (2011) Rhizosphere indole-3-acetic acid as a mediator in the Sorghum bicolor-phenanthrene Sinorhizobium meliloti interactions. Plant Physiol Biochem 49:600–608CrossRefPubMedGoogle Scholar
  40. Grover M, Madhubala R, Ali SK, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961CrossRefPubMedGoogle Scholar
  41. Gujral MS, Agrawal P, Khetmalas MB, Pandey R (2013) Colonization and plant growth promotion of Sorghum seedlings by endorhizospheric Serratia sp. Acta Biol Indica 2:343–352Google Scholar
  42. Hartmann A, Schimd M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  43. Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifier community. Ecol Lett 8:976–985CrossRefGoogle Scholar
  44. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  45. Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622CrossRefGoogle Scholar
  46. İnceoğlu Ö, Salles Joana F, van Overbeek LS, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76:3675–3684CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kamilova F, Kravchenko LV, Shaposhnikov AI, AzarovaT Makarova N, Lugtenberg B (2006) Organic acids, sugars and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 9:250–256CrossRefGoogle Scholar
  48. Kevin Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  49. Kochar M, Vaishnavi A, Upadhyay A and Srivastava S (2013) Bacterial biosynthesis of indole-3-acetic acid: Signal messenger service. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. vol 1, Chapter 29. Wiley/Blackwell, Hoboken, New Jersey, USA, pp 309–325Google Scholar
  50. Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230CrossRefPubMedGoogle Scholar
  51. Koul V, Adholeya A, Kochar M (2015a) Sphere of influence of indole acetic acid and nitric oxide in bacteria. J Basic Microbiol 55(5):543–553CrossRefPubMedGoogle Scholar
  52. Koul V, Tripathi C, Adholeya A, Kochar M (2015b) Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM. Res Microbiol 166(3):174–185CrossRefPubMedGoogle Scholar
  53. Kourtev PS, Ehrenfeld JG, Haggblom MM (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166CrossRefGoogle Scholar
  54. Kuske CR, Ticknor LO, Busch JD, Gehring CA, Whitham TG (2003) The pinyon rhizosphere, plant stress and herbivory affect the abundance of microbial decomposers in soil. Microb Ecol 45:340–352CrossRefPubMedGoogle Scholar
  55. Loiret F, Ortega E, Kleiner D, Ortega-Rodes P, Rodes R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511CrossRefPubMedGoogle Scholar
  56. Lugtenberg B, De Weger L, Bennett J (1991) Microbial stimulation of plant growth and protection from disease. Curr Opin Biotechnol 2:457–464CrossRefGoogle Scholar
  57. Malhotra M (2007) Genetic analysis and manipulation of IAA biosynthesis in Rhizospheric isolates: Azospirillum brasilense and Pseudomonas fluorescens Psd. Ph.D. Thesis. Delhi University, New Delhi, IndiaGoogle Scholar
  58. Malhotra M, Srivastava S (2006) Targeted engineering of Azospirillum brasilense strain SM with Indole acetamide pathway for IAA over-expression. Can J Microbiol 52:1078–1084CrossRefPubMedGoogle Scholar
  59. Malhotra M, Srivastava S (2008) Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: Molecular and functional analysis of ipdC in strain SM. Environ Microbiol 10:1365–1373CrossRefPubMedGoogle Scholar
  60. Malhotra J, Aparna K, Dua A, Sangwan N, Trimurtulu N, Rao DL, Lal R (2015) Microbial and genetic ecology of tropical Vertisols under intensive chemical farming. Environ Monit Assess 187:4081. doi: 10.1007/s10661-014-4081-2 CrossRefPubMedGoogle Scholar
  61. Molina-Favero C, Creus CM, Lanteri ML, Correa-Aragunde N, Lombardo MC, Barassi CA et al (2007) Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Adv Bot Res 46:1–33CrossRefGoogle Scholar
  62. Morgan JAW, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739CrossRefPubMedGoogle Scholar
  63. Netzly DH, Riopel JL, Ejeta G, Butler LG (1988) Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci 36:441–446Google Scholar
  64. Pacovsky RS (1988) Influence of inoculation with Azospirillum brasilense and Glomus fasciculatum on sorghum nutrition. Plant Soil 110:283–287CrossRefGoogle Scholar
  65. Pacovsky RS (1989) Diazotroph establishment and maintenance in the Sorghum—GlomusAzospirillum association. Can J Microbiol 35:977–981CrossRefGoogle Scholar
  66. Pedersen WL, Chakrabarty K, Klucas RV, Vidave AK (1978) Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl Environ Microbiol 35:129–135PubMedPubMedCentralGoogle Scholar
  67. Perin L, Martínez-Aguilar L, Castro- González R, Estrada-delos Santos P, Cabellos-Avelar T, Guedes HV et al (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110CrossRefPubMedPubMedCentralGoogle Scholar
  68. Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A et al (2014) Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Change Biol 20:1174–1190CrossRefGoogle Scholar
  69. Ramond JB, Tshabuse F, Bopda CW, Cowan DA, Tuffin MI (2013) Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench). Plant Soil 372:265–278CrossRefGoogle Scholar
  70. Ramond JB, Pienaar A, Armstrong A, Seely M, Cowan DA (2014) Niche-Partitioning of edaphic microbial communities in the Namib desert gravel plain fairy circles. PLoS ONE 9:e109539CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125CrossRefPubMedGoogle Scholar
  72. Rout ME (2011) The role of microbial endosymbionts in Sorghum halepense invasions: evidence of a new invasion strategy, microbially enhanced competitive ability (MECA). Ph.D. Thesis, University of Montana, Missoula, MT, USAGoogle Scholar
  73. Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172Google Scholar
  74. Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. Am J Bot 100:1726–1737CrossRefPubMedGoogle Scholar
  75. Russell AE, Cambardella CA, Laird DA, Jaynes DB, Meek DW (2009) Nitrogen fertilizer effects on soil carbon balances in Midwestern US agricultural systems. Ecol Appl 19:1102–1113CrossRefPubMedGoogle Scholar
  76. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30Google Scholar
  77. Saito A, Ikeda S, Ezura H, Minamisawa K (2007) Microbial community analysis of the phytosphere using culture-independent methodologies. Microbes Environ 22:93–105CrossRefGoogle Scholar
  78. Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607CrossRefPubMedGoogle Scholar
  79. Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184CrossRefPubMedGoogle Scholar
  80. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208CrossRefPubMedGoogle Scholar
  81. Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant-soil microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781CrossRefPubMedGoogle Scholar
  82. Slangen J, Kerkhoff P (1984) Nitrification inhibitors in agriculture and horticulture: a literature review. Fert Res 5:1–76CrossRefGoogle Scholar
  83. Smart DR, Bloom AJ (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci USA 98:7875–7878CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, USA, pp 21–45Google Scholar
  85. Spaepen S, Vanderleyden J, Remans R (2007) Indole- 3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448CrossRefPubMedGoogle Scholar
  86. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  87. Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006a) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112CrossRefGoogle Scholar
  88. Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T et al (2006b) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Crit Rev Plant Sci 25:303–335CrossRefGoogle Scholar
  89. Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007) Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant Soil 294:5–18CrossRefGoogle Scholar
  90. Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T et al (2013) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259CrossRefGoogle Scholar
  91. Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL et al (2015) Suppression of soil nitrification by plants. Plant Sci 233:155–164CrossRefPubMedGoogle Scholar
  92. Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet patatoes (Ipoema batatas L.). Microbes Environ 23:89–93CrossRefPubMedGoogle Scholar
  93. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356CrossRefPubMedPubMedCentralGoogle Scholar
  94. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefPubMedGoogle Scholar
  95. Wu L, Ma K, Lu Y (2009) Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. Microb Ecol 57:58–68CrossRefPubMedGoogle Scholar
  96. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y et al (2007) Nitrogen deficiency as well as phosphorous deficiency in sorghum promote the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132CrossRefPubMedGoogle Scholar
  97. Zakir HAKM, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, Ishikawa T et al (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451CrossRefPubMedGoogle Scholar
  98. Zinniel DK, Lambrecht P, Beth Harris N, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.TERI-Deakin Nanobiotechnology Centre, The Energy and Resources InstituteDarbari Seth Block, India Habitat CentreNew DelhiIndia

Personalised recommendations