Advertisement

TILLING and EcoTILLING for Discovery of Induced and Natural Variations in Sorghum Genome

  • Ramadoss Bharathi Raja
  • Somanath Agasimani
  • Varadharaju Anusheela
  • Venkatesan Thiruvengadam
  • Ravindra N. Chibbar
  • Sundaram Ganesh RamEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

TILLING is a reverse-genetic method to uncover the induced variation from the mutagenized population. Initially induced variation was detected by melting and reannealing the PCR products, cleavage of heteroduplex using CEL I endonucleases, and the resulting products separated and visualized on sequencing gels or capillaries. Subsequent sequence analysis in heteroduplex regions of individual plant DNA identified the mutation. In the past 6 years, mutation discovery through sequencing is becoming popular. Sequencing-based TILLING is less labor intensive with high specificity and confidence of mutation discovery. TILLING by sequencing has been reported in many crop plants including rice and wheat and is yet to be applied in sorghum. A conventional TILLING project has been reported in sorghum for agronomically important traits and also for the development of acyanogenic or low cyanogenic mutants in sorghum. EcoTILLING is another reverse-genetic approach that utilizes the same principles in the natural population instead of the mutagenized population. In this chapter, we discuss TILLING and EcoTILLING in sorghum and also TILLING by sequencing for the improvement of sorghum through the reverse-genetic approach.

Keywords

TILLING by sequencing EcoTILLING Sorghum Natural variation Reverse genetics Mutation Functional genomics 

References

  1. Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. Vitro Cell Dev Biol Plant 37:341–348CrossRefGoogle Scholar
  2. Abu Assar AH, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45:1636–1644CrossRefGoogle Scholar
  3. Anas, Yoshida T (2004) Sorghum diversity evaluated by simple sequence repeat (SSR) markers and phenotypic performance. Plant Prod Sci 7:301–308Google Scholar
  4. Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bauchet G (2002) EcoTILLING on tomato core collections for brix: Implementing the methodology and first results. Master Thesis, Wageningen University, The NetherlandsGoogle Scholar
  6. Blomstedt CK, Gleadow RM, O’Donnell N, Naur P, Jensen K, Laursen T, Olsen CE, Stuart P, Hamill JD, Møller BL, Neale AD (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66CrossRefPubMedGoogle Scholar
  7. Brady SM, Provart NJ (2007) Extreme breeding: leveraging genomics for crop improvement. J Sci Food Agric 87:925–929. doi: 10.1002/jsfa.2763 CrossRefGoogle Scholar
  8. Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tiss Org Cult 20:101–110CrossRefGoogle Scholar
  9. Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high-tannin sorghum. Plant Cell Tiss Org Cult 9:245–252CrossRefGoogle Scholar
  10. Carvalho CH, Boddu J, Zehr UB, Axtell JD, Pedersen JF, Chopra S (2005) Genetic and molecular characterization of Candystripel transposition events in sorghum. Genetica 124:201–212CrossRefPubMedGoogle Scholar
  11. Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chopra S, Brendel V, Zhang J, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96:15330–15335CrossRefPubMedPubMedCentralGoogle Scholar
  13. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694CrossRefPubMedGoogle Scholar
  14. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37(5): 778–786Google Scholar
  15. Dahlberg JA, Spinks M (1995) Current status of the U. S. sorghum germplasm collection. Sorghum Newsl 36:4–11Google Scholar
  16. Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180PubMedGoogle Scholar
  17. Eberhart SA, Bramel Cox PJ, Prasada Rao KE (1997) Preserving genetic resources. IPages 25–41. In: Proceedings of the international conference on genetic improvement of sorghum and pearl millet, Holiday Inn Plaza, Lubbock, Texas. Lincoln, Nebraska, USA: INTSORMIL/ICRISAT, pp 25–41. 22–27 Sep 1996Google Scholar
  18. Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192CrossRefGoogle Scholar
  19. Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333CrossRefPubMedGoogle Scholar
  20. Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215CrossRefPubMedGoogle Scholar
  21. Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709CrossRefGoogle Scholar
  22. Graham R, Liew M, Meadows C, Lyon E, Wittwer CT (2005) Distinguishing different DNA heterozygotes by high-resolution melting. Clin Chem 51:1295–1298CrossRefPubMedGoogle Scholar
  23. Greene EA, Codomo A, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740Google Scholar
  24. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401CrossRefPubMedGoogle Scholar
  25. Kaeppler HF, Pederson JF (1997) Evaluation of 41 elite and exotic inbred Sorghum genotypes for high quality callus production. Plant Cell Tiss Org Cult 48:71–75CrossRefGoogle Scholar
  26. Kayode APP, Linnemann AR, Nout MJR, Hounhouigan JD, Stomph TJ, Smulders MJM (2006) Diversity and food quality properties of farmers’ varieties of sorghum from Benin. J Sci Food Agri 86:1032–1039CrossRefGoogle Scholar
  27. Knoll J, Chu Y, Holbrook CC, Ozias-Akins P (2009) Genetic modification of Arachis hypogaea for quality traits. In: Proceedings 4th international conference on advances in Arachis through genomics and biotechnology, p 35Google Scholar
  28. Kresovich S, McGee RE, Panella L, Reilley AA, Miller FR (1987) Application of cell and tissue culture techniques for the genetic improvement of sorghum, Sorghum bicolor (L.) Moench: progress and potential. Adv Agron 41:147–170Google Scholar
  29. Ma H, Liang GH (1987) Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench. Theor Appl Genet 73:389–394CrossRefPubMedGoogle Scholar
  30. Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565CrossRefPubMedGoogle Scholar
  31. Masteller VJ, Holden DJ (1970) The growth and organ formation from callus tissue of sorghum. Plant Physiol 45:362–364CrossRefPubMedPubMedCentralGoogle Scholar
  32. McCallum CM, Comai L, Elizabeth A, Greene SH (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442CrossRefPubMedPubMedCentralGoogle Scholar
  33. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458CrossRefPubMedGoogle Scholar
  34. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812Google Scholar
  35. Nida H, Blum S, Zielinski D, Srivastava DA, Elbaum R, Xin Z, Erlich Y, Fridman E, Shental N (2016) Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J Accepted Author Manuscript. doi: 10.1111/tpj.13161 Google Scholar
  36. Rosenow DT, Dahlberg JA (2000) Collection, conversion, and utilization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, USA, pp 309–328Google Scholar
  37. Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2009) Resistance to grain mold and downy mildew in a mini core collection of sorghum germplasm. Plant Dis 94(4):439–444CrossRefGoogle Scholar
  38. Sim S, Ramirez JL, Dimopoulos G (2012) Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus Induces Genes that modulate infection and blood-feeding behavior. PLoS Pathog 8(3):e1002631Google Scholar
  39. Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115CrossRefPubMedGoogle Scholar
  40. Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stemple DL (2004) TILLING—a high-throughput harvest for functional genomics. Nat Rev Genet 5:145–150CrossRefPubMedGoogle Scholar
  42. Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microprojectile bombardment. Plant Cell Tiss Org Cult 75:1–18CrossRefGoogle Scholar
  43. Till BJ, Reynolds EA, Greene CA, Codomo LC, Enns JE, Johnson C, Burtner AR, Odden K, Young NE, Taylor JG, Henikoff S, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530CrossRefPubMedPubMedCentralGoogle Scholar
  44. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19Google Scholar
  45. Tissier A, Bourgeois P (2001) Reverse genetics in plants. Curr Genomics 2:269–284Google Scholar
  46. Tsai H, Tyson H, Rebecca N, Victor M, Brian W et al (2011) Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiol 156:1257–1268Google Scholar
  47. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780CrossRefGoogle Scholar
  48. Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180(4):751–765CrossRefPubMedGoogle Scholar
  49. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xin Z, Wang M, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2:10–16CrossRefGoogle Scholar
  51. Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798CrossRefPubMedGoogle Scholar
  52. Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Plant Breed 52:243–252Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ramadoss Bharathi Raja
    • 1
    • 3
  • Somanath Agasimani
    • 2
  • Varadharaju Anusheela
    • 3
  • Venkatesan Thiruvengadam
    • 3
  • Ravindra N. Chibbar
    • 1
  • Sundaram Ganesh Ram
    • 3
    Email author
  1. 1.Department of Plant SciencesCollege of Agriculture and Bioresources, University of SaskatchewanSaskatoonCanada
  2. 2.University of Agricultural SciencesBangaloreIndia
  3. 3.Department of Plant Genetic ResourcesCentre for Plant Breeding and Genetics, Tamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations