Advertisement

Cloning of Economically Significant Sorghum Mutant Genes

  • Sandeep R. MarlaEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Mutations, occurring either naturally or induced, are permanent alterations of the nucleotide sequence in organisms. These alterations occurring throughout the evolution of a species are responsible for creating immense genetic diversity. Such natural variation generated by mutations has been selected and extensively utilized in crop improvement in several agronomically important crops. In sorghum, mutations producing key agronomic traits such as nonshattering, dwarfing, photoperiod insensitivity, improved protein digestibility, and brown midrib phenotype resulted in establishment of sorghum as the fifth major cereal crop of the world. In addition to successful utilization of these mutations in breeding, understanding the mechanistic basis underlying these traits is equally important to assist in trait advancement. Hence, mutations underlying important agronomic traits were identified using approaches such as positional or map-based cloning, candidate-gene approach, and whole genome sequencing. This chapter provides an overview of key sorghum mutations that resulted in evolution of sorghum as a major source of food, forage, and bioenergy. Additionally, cloning strategies used to identify the underlying mutations and mechanistic basis of the phenotype of interest are discussed. Identification of mutations underlying agriculturally important traits can assist in developing molecular markers to enable precise introgression of selected traits into elite inbreds used in sorghum improvement programs.

Keywords

Mutant Map-based cloning Candidate gene Whole genome sequencing QTL 

References

  1. Barrero Farfan ID, Bergsma BR, Johal GS, Tuinstra MR (2012) A stable allele in sorghum and a molecular marker to facilitate selection. Crop Sci 52(5):2063–2069CrossRefGoogle Scholar
  2. Benmoussa M, Chandrashekar A, Ejeta G, Hamaker BR (2015) Cellular response to the high protein digestibility/high-lysine (hdhl) sorghum mutation. Plant Sci 241:70–77CrossRefPubMedGoogle Scholar
  3. Blomstedt CK, Gleadow RM, O’Donnell N, Naur P, Jensen K, Laursen T, Olsen CE (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol 10(1):54–66CrossRefGoogle Scholar
  4. Blomstedt CK, O’Donnell N, Bjarnholt N, Neale AD, Hamill JD, Møller BL, and Gleadow RM (2016) Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Plant Cell Physiol 57(2):373–86Google Scholar
  5. Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum brown midrib gene encoding caffeic acid o-methyltransferase. Mol Genet Genomics 269(2):205–214PubMedGoogle Scholar
  6. Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129(3):1222–1231CrossRefPubMedPubMedCentralGoogle Scholar
  7. Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a Phytochrome b. Plant Physiol 113(2):611–619CrossRefPubMedPubMedCentralGoogle Scholar
  8. Délye C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53(5):728–746CrossRefGoogle Scholar
  9. Délye C, Zhang X, Michel S, Matéjicek A, Powles SB (2005) Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137(3):794–806CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91(1081):282–284CrossRefPubMedGoogle Scholar
  11. Gorthy S, Mayandi K, Faldu D, Dalal M (2013) Molecular characterization of allelic variation in spontaneous brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Mol Breeding 31(4):795–803CrossRefGoogle Scholar
  12. Hansen KS, Kristensen C, Tattersall DB, Jones PR, Olsen CE, Bak S, Møller BL (2003) The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry 64(1):143–151CrossRefPubMedGoogle Scholar
  13. Hilley J, Truong S, Olson S, Morishige D, Mullet J (2016) Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE 11(3):e0151271CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kaufman RC, Herald TJ, Bean SR, Wilson JD, Tuinstra MR (2013) Variability in tannin content, chemistry and activity in a diverse group of tannin containing sorghum cultivars. J Sci Food Agric 93(5):1233–1241CrossRefPubMedGoogle Scholar
  15. Kershner KS, Al-Khatib K, Krothapalli K, Tuinstra MR (2012) Genetic resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides in grain sorghum. Crop Sci 52(1):64–73CrossRefGoogle Scholar
  16. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2(10):815–822CrossRefPubMedGoogle Scholar
  17. Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195(2):309–318CrossRefPubMedPubMedCentralGoogle Scholar
  18. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939CrossRefPubMedGoogle Scholar
  19. Lin Z, Li X, Shannon LM, Yeh C, Wang ML, Bai G, Peng Z et al (2012) Parallel domestication of the shattering1 genes in cereals. Nat Genet 44(6):720–724CrossRefPubMedPubMedCentralGoogle Scholar
  20. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302(5642):81–84CrossRefPubMedGoogle Scholar
  21. Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (Prr37) controls photoperiodic flowering in sorghum. PNAS 108(39):16469–16474CrossRefPubMedPubMedCentralGoogle Scholar
  22. Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang S, Klein PE (2014) Ghd7 (Ma6) represses sorghum flowering in long days: alleles enhance biomass accumulation and grain production. Plant Genome 7(2):1–10CrossRefGoogle Scholar
  23. Ordonio RL, Yusuke I, Asako H, Kozue O, Shigemitsu K, Tsuyoshi T, Hiroshi M, Hidemi K, Makoto M, Takashi S (2014) Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Nat Sci Rep 4(June):1–10Google Scholar
  24. Quinby JR, Karper RE (1961) Inheritance of duration of growth in the milo group of sorghum. Crop Sci 1:8–10CrossRefGoogle Scholar
  25. Saballos A, Wilfred V, Loren R, Gebisa E (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1(3–4):193–204CrossRefGoogle Scholar
  26. Saballos A, Gebisa E, Emiliano S, ChulHee K, Wilfred V (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (l.) moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181(2):783–795CrossRefPubMedPubMedCentralGoogle Scholar
  27. Saballos A, Scott SE, Emiliano S, Timothy FP, Zhanguo X, ChulHee K, Jeffrey PF, Wilfred V (2012) Brown midrib2 (bmr2) encodes the major 4-coumarate:coenzyme a ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). Plant J 70(5):818–830CrossRefPubMedGoogle Scholar
  28. Sattler SE, Aaron SJ, Eric HJ, Nathan PA, Deanna FL, Gautam S, Jeffrey PF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150(2):584–595CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sattler SE, Ana S, Zhanguo X, Deanna FL, Wilfred V, and Jeffrey PF (2014) Characterization of novel sorghum brown midrib mutants from an EMS-mutagenized population. G3 4(11):2115–2124Google Scholar
  30. Scully ED, Gries T, Funnell-Harris DL, Xin Z, Kovacs FA, Vermerris W, Sattler SE (2016) Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J Integr Plant Biol 58(2):136–149CrossRefPubMedGoogle Scholar
  31. Tang H, Hugo CE, Sayan D, Uzay SU, Chengbo Z, Hui G, Valorie GH, Zhengxiang G, Thomas CE, Andrew PH (2013) Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. PNAS 110(39):15824–15829CrossRefPubMedPubMedCentralGoogle Scholar
  32. Uga Y, Kazuhiko S, Satoshi O, Jagadish R, Manabu I, Naho H, Yuka K et al (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102CrossRefPubMedGoogle Scholar
  33. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid o-methyltransferase. Plant Cell 7(4):407–416CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang P, Natalia D, John MA, Clint C (2015) Genetic manipulation of lignocellulosic biomass for bioenergy. Current opinion chemical biology. Energy Mechanist Biol 29(December):32–39Google Scholar
  35. Wu Y, Xianran L, Wenwen X, Chengsong Z, Zhongwei L, Yun W, Jiarui L et al (2012) Presence of tannins in sorghum grains is conditioned by different natural alleles of tannin1. PNAS 109(26):10281–10286CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wu Y, Lingling Y, Xiaomei G, David HR, Joachim M (2013) Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nat Commun 4:2217PubMedGoogle Scholar
  37. Xin Z, Ming WL, Noelle BA, Gloria B, Cleve F, Gary P, John B (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang S, Rebecca ML, Daryl MT, Patricia KE, William RL, John ME (2014a) Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 9(8):e105352CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang S, Brock WD, Daryl MT, John ME (2014b) CONSTANS is a photoperiod-regulated activator of flowering in sorghum. BMC Plant Biol 14(May):148CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of AgronomyKansas State UniversityManhattanUSA
  2. 2.Department of Botany and Plant PathologyPurdue UniversityWest LafayetteUSA

Personalised recommendations