Skip to main content

Genetic Transformation for Functional Genomics of Sorghum

  • Chapter
  • First Online:
The Sorghum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Plant transformation is an essential requirement for fundamental research in functional biology and for crop improvement. Sorghum is primarily a recalcitrant crop for tissue culture and transformation. It has taken three decades of painstaking optimization efforts to reach a transformation efficiency of 20 and 30 % through particle bombardment and Agrobacterium-mediated genetic transformation in sorghum, respectively. This chapter describes the different variables that were analyzed for the success of tissue culture and transformation in sorghum. These factors include type of explants, culture media, hormone combinations, methods of gene transfer, vectors, selection marker genes, and so on. Furthermore, efforts for deployment of this technique for sorghum improvement in the area of biotic and abiotic stress tolerance, and improvement of nutritional quality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Sant R, Bokan M, Steadman KJ, Godwin ID (2012) Expression pattern of the alpha-kafi rin promoter coupled with a signal peptide from Sorghum bicolor L. Moench J Biomed Biotechnol 2012:1–8

    Article  Google Scholar 

  • Baskaran P, Rajeswari BR, Jayabalan N (2006) Development of an in vitro regeneration system in sorghum [Sorghum bicolor (l.) Moench] using root transverse thin cell layers (tTCLs). Turk J Bot 30:1–9

    Google Scholar 

  • Battraw M, Hall YC (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β-glucuronidase genes. Theor Appl Genet 82:161–168

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Brandizzi F, Irons S, Kearns A, Hawes C (2003) BY-2 cells: culture and transformation for live cell imaging. Curr Protoc Cell Biol 19:1.7.1–1.7.16

    Google Scholar 

  • Cai T, Butler L (1990) Plant-regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tiss Org Cult 20:101–110

    Article  Google Scholar 

  • Can ND, Nakamura S, Haryanto TAD, Yoshida T (1998) Effects of physiological status of parent plants and culture medium composition on the anther culture of sorghum. Plant Prod Sci 1:211–215

    Article  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang LY, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol Plant 33:92–100

    Article  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell John D, Butlers Larry G, Bressan Ray A, Hasegawa Paul M (1993) Transgenic sorghum plants via microprojectile bombardment. Agric Sci 90:11212–11216

    CAS  Google Scholar 

  • Cho MJ, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Da Silva LS, Taylor J, Taylor JRN (2011) Transgenic sorghum with altered kafi rin synthesis: Kafi rin solubility, polymerization, and protein digestion. J Agric Food Chem 59:9265–9270

    Article  PubMed  Google Scholar 

  • Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tiss Org Cult 61:115–123

    Article  Google Scholar 

  • Elkonin IA, Lopushanskaya RF, Pakhomova NV (1995) Initiation and maintenance of friable, embryogenic callus of sorghum (Sorghum bicolor (L.) Moench) by amino acids. Maydica 40:153–157

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48(2):321–333

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  CAS  PubMed  Google Scholar 

  • Grootboom AW, Mkhonza NL, Mbambo Z, O’Kennedy MM, da Silva LS, Taylor J, Taylor JR, Chikwamba R, Mehlo L (2014) Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Rep 33:521–537

    Article  CAS  PubMed  Google Scholar 

  • Grootboom AW, Mkhonza NL, O’Kennedy MM, Chakauya E, Kunert K, Chikwamba RK (2010) Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems. Int J Bot 6:89–94

    Article  CAS  Google Scholar 

  • Guo C, Cui W, Feng X, Zhao J, Lu G (2011) Sorghum insect problems and management. J Integr Plant Biol 53:178–192

    Article  PubMed  Google Scholar 

  • Gupta S, Khanna VK, Singh R, Garg GK (2006) Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum. Plant Cell Tiss Organ Cult 86:379–388

    Article  Google Scholar 

  • Gurel S, Gurel E, Miller TI, Lemaux PG (2012) Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos. Methods Mol Biol 47:109–122

    Article  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  CAS  PubMed  Google Scholar 

  • Hagio T, Blowers AD, Earle ED (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep 10:260–264

    Article  CAS  PubMed  Google Scholar 

  • Harshavardhan D, Rani TS, Ulaganathan K, Seetarama N (2002) An improved protocol for regeneration of Sorghum bicolor from isolated shoot apices. Plant Biotechnol 19:163–171

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, DeBlock M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill Ambroz KL, Weeks JT (2001) Comparison of constitutive promoters for sorghum transformation. Cereal Res Commun 29:17–24

    CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta-glucuronidase as visual markers. Hereditas 137:20–28

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joersbo M, Donaldson I, Kreibery J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Jogeswar G, Ranadheer D, Anjaiah V, KaviKishor PB (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In vitro Cell Dev Biol Plant 43:159–166

    Article  Google Scholar 

  • Kaeppler HF, Pedersen JF (1997) Evaluation of 41 elite and exotic inbred Sorghum genotypes for high quality callus production. Plant Cell Tiss Organ Cult 48:71–75

    Article  Google Scholar 

  • Kaeppler HF, Pedersen JF (1996) Media effects on phenotype of callus cultures initiated from photoperiod-insensitive elite inbred sorghum lines. Maydica 41:83–89

    Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afri J Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Krishnaveni S, Joeung JM, Muthukrishnan S, Liang GH (2001) Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J Genet Breed 55:151–158

    CAS  Google Scholar 

  • Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Elthon T, Bean S, Ioerger BP, Tilley M, Clemente T (2012) Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol J 10:533–544

    Article  CAS  PubMed  Google Scholar 

  • Kumaravadivel N, Rangasamy S (1994) Plant regeneration from sorghum anther cultures and field evaluation of progeny. Plant Cell Rep 13:286–290

    Article  CAS  PubMed  Google Scholar 

  • Lipkie TE, De Moura FF, Zhao ZY, Albertsen MC, Che P, Glassman K, Ferruzzi MG (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Gilding EK, Godwin ID (2013) Additive effects of three auxins and copper on sorghum in vitro root induction. In vitro Cell Dev Biol Plant 49:191–197

    Article  Google Scholar 

  • Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009) Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tissue Organ Cult 99:97–108

    Article  CAS  Google Scholar 

  • Ma L, Lukasik E, Gawehns F, Takken FL (2012) The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Methods Mol Biol 835:61–74

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon C, Gunderson G, Nabors MW (1987) High efficiency plant regeneration by somatic embryogenesis from callus of mature embryo explants of bread wheat (Triticum aestivum) and grain sorghum (Sorghum bicolor). Vitro Cell Dev Biol Plant 23:443–448

    Article  Google Scholar 

  • Maheswari M, Jyothilakshmi N, Yadav SK, Varalaxmi Y, Vijaya Lakshmi A, Vanaja M, Venkateswarlu B (2006) Efficient plant regeneration from shoot apices of Sorghum. Biol Plant 50:741–744

    Article  CAS  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54:647–652

    Article  CAS  Google Scholar 

  • Mall TK, Dweikat I, Sato SJ, Neresian N, Xu K, Ge Z, Wang D, Elthon T, Clemente T (2011) Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol 75:467–479

    Article  CAS  PubMed  Google Scholar 

  • Maralappanavar MS, Kuruvinashetti MS, Harti CC (2000) Regeneration, establishment and evaluation of somaclones in Sorghum bicolor (L.) Moench. Euphytica 115:173–180

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N’-1, 2, 3-thiadiazol-5-ylurea (Thidiazuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nguyen T-V, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tiss Organ Cult 91:155–164

    Article  CAS  Google Scholar 

  • Nirwan RS, Kothari SL (2003) High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. Vitro Cell Dev Biol Plant 39:161–164

    Article  CAS  Google Scholar 

  • Nirwan RS, Kothari SL (2004) High frequency shoot organogenesis in Sorghum bicolor (L.). J Plant Biochem Biotechnol 13:149–152

    Article  CAS  Google Scholar 

  • Oria MP, Hamaker BR, Axtell JD, Huang CP (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci USA 97:5065–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou-Lee T, Turgeon R, Wu R (1986) Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc Natl Acad Sci USA 83:6815–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pola SR, Saradamani N (2006) Somatic embryogenesis and plantlet regeneration in Sorghum bicolor(L.) Moench from leaf segments. J Cell Mol Biol 5:99–107

    Google Scholar 

  • Sai Kishore N, Visarada KB, Aravinda Lakshmi Y, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25:174–182

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of a single Ca2-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Sairam RV, Seetharama N, Devi PS, Verma A, Murthy UR, Potrykus I (1999) Plant regeneration from mesophyll protoplasts in sorghum [Sorghum bicolor (L.) Moench]. Plant Cell Rep 18:972–977

    Article  CAS  Google Scholar 

  • Sato S, Clemente T, Dweikat I (2004) Identifi cation of an elite sorghum genotype with high in vitro performance capacity. In Vitro Cell Dev Biol Plant 40:57–60

    Article  Google Scholar 

  • Schmidt M, Bothma G (2006) Risk assessment for transgenic sorghum in Africa: crop-to-crop gene flow in Sorghum bicolor (L.) Moench. Crop Sci 46:790–798

    Google Scholar 

  • Schulz P, Herde M, Romeis T (2013) Calcium-Dependent Protein Kinases: Hubs in Plant Stress Signaling and Development. Plant Physiol 163:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. BioTechnique 26:1128–1132

    Google Scholar 

  • Seetharama N, Sairam RV, Rani TS (2000) Regeneration of sorghum from shoot tip cultures and field performance of the progeny. Plant Cell Tiss Organ Cult 61:169–173

    Article  Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult 75:1–18

    Article  CAS  Google Scholar 

  • Tesso T, Kapran I, Grenier  C, Snow A, Sweeney P (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey.  Crop Sci 38:1425–1431

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The International Rice Genome Sequence Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath E, Royer M, Seetharama N, Patil JV (2014) Production and evaluation of transgenic sorghum for resistance to stem borer. Vitro Cell Dev Biol Plant 50:176–189

    Article  CAS  Google Scholar 

  • Wang W, Wang J, Yang C, Li Y, Liu L, Xu J (2007) Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol Appl Biochem 48:79–83

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Lau T, Cai N, Singh J, Pedersen JF, Vensel WH (2009) Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. J Cereal Sci 49:73–82

    Google Scholar 

  • Wu XR, Kenzior A, Willmot D, Scanlon S, Chen Z, Topin A, He SH, Acevedo A, Folk WR (2007) Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine. Plant J 50:627–636

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li X, Xiang W, Zhu C, Lin Z, Wu Y, Li J, Pandravada S, Ridder DD, Bai G, Wang ML, Trick HN, Bean SR, Tuinstra MR, Tesso TT, Yu J (2012) Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proc Natl Acad Sci USA 109:10281–10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho MJ, Zhao ZY (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. Vitro Cell Dev Biol Plant 50:9–18

    Article  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z-Y, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y, Jung R (2003) Nutritionally improved sorghum transgenic. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic Dordrecht, The Netherlands Publishers, pp 413–416

    Google Scholar 

  • Zhong H, Wang W, Sticklen M (1998) In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices. J Plant Physiol 153:719–726

    Article  CAS  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998a) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung J-M, Liang GH (1998b) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Dalal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Dalal, M. (2016). Genetic Transformation for Functional Genomics of Sorghum. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_12

Download citation

Publish with us

Policies and ethics