Genomic Approaches for Improving Grain Quality of Sorghum

  • Stephen R. Mudge
  • Bradley C. Campbell
  • Nurazilah B. Mustapha
  • Ian D. GodwinEmail author
Part of the Compendium of Plant Genomes book series (CPG)


Sorghum grain provides an important calorific source for millions of people living in developing countries and is a principal animal feed and source of gluten-free flour for the livestock and food processing industries of developed nations. A versatile grain, sorghum is also widely utilized in the production of alcoholic beverages in countries such as China and several countries in sub-Saharan Africa, where the liquor baijiu and beer are a major end-use, respectively. Renowned as a hardy crop, sorghum is relatively drought tolerant and can be grown on marginal lands and is adaptable to a wide range of environmental conditions, giving this species particular advantages over other cereals. Despite its inherent benefits, sorghum has not proven to be a major alternative to the other notable cereals such as wheat and maize, due to significant problems concerning the low amount of specific essential amino acids, for example, lysine, lower protein content, lower starch digestibility, and smaller grain size, which has implications for the traits mentioned above as well as acting as an impediment to efficient grain handling in cereal-processing industries. The challenges in enhancing sorghum grain quality are not insurmountable and great strides have already been achieved in a relatively short time via scientific breeding to enhance grain yield and provide abiotic and biotic stress resistance. As the sorghum market has matured, demand for higher quality grain, whether for alcohol production or animal and human consumption, is increasing. Although yield and disease resistance are still the primary focus of breeders, advances in genomics, online bioinformatic data repositories, high-throughput phenotypic screening such as near-infrared reflectance (NIR), and the increasing affordability of next-generation sequencing, have allowed breeders to incorporate improved grain quality parameters into their programs. This chapter elaborates recent advances in genomics that have provided researchers with the tools to solve several of the issues surrounding grain quality in sorghum as well as future directions for experimentation.


Sorghum Quality Endosperm Starch Lignin Tannin SNP Genetic engineering 


  1. Åkerberg A, Liljeberg H, Bjorck I (1998) Effects of amylose/amylopectin ratio and baking conditions on resistant starch formation and glycaemic indicies. J Cereal Sci 28:71–80CrossRefGoogle Scholar
  2. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK et al (2012) Glycosyltransferases in family 61 mediate arabinofuranosyl transfer on to xylan in grasses. Proc Natl Acad Sci USA 109:989–993PubMedPubMedCentralCrossRefGoogle Scholar
  3. Axtell JD, Kirleis AW, Hassen MM, d’Croz Mason N, Mertz ET, Munck L (1981) Digestibility of sorghum proteins. Proc Natl Acad Sci USA 78:1333–1335PubMedPubMedCentralCrossRefGoogle Scholar
  4. Badigannavar A, Girish G, Ramachandran V, Ganapathi TR (2016) Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop J 4:61–67CrossRefGoogle Scholar
  5. Babio N, Balanza R, Basulto J, Bullo M, Salas-Salvado J (2010) Dietary fibre: influence on body weight, glycemic control and plasma cholesterol profile. Nutr Hospital 25:327–340Google Scholar
  6. Bach Knudsen K, Munck L, Eggum B (1988) Effect of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, ugali. Br J Nutr 59:31e47Google Scholar
  7. Bahaji A, Li J, Sanchez-Lopez AM, Baroja-Fernandez E, Munoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J (2014) Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 32:87–106PubMedCrossRefGoogle Scholar
  8. Bedford MR, Morgan AJ (1996) The use of enzymes in poultry diets. Worlds Poult Sci J 52:61–68. doi: 10.1079/WPS19960007 CrossRefGoogle Scholar
  9. Behall KM, Hallfrisch J (2002) Plasma glucose and insulin reduction after consumption of breads varying in amylose content. Eur J Clin Nutr 56:913–920PubMedCrossRefGoogle Scholar
  10. Belton PS, Delgadillo I, Halford NG, Shewry PR (2006) Kafirin structure and functionality. J Cereal Sci 44:272–286CrossRefGoogle Scholar
  11. Belton PS, Taylor JR (2004) Sorghum and millets: protein sources for Africa. Trends Food Sci Technol 15:94–98CrossRefGoogle Scholar
  12. Betts NS, Fox GP, Kelly AM, Cruickshank AW, Lahnstein J, Henderson M, Jordan DR, Burton RA (2015) Non-cellulosic cell wall polysaccharides are subject to genotype x environment effects in sorghum (Sorghum bicolor) grain. J Cereal Sci 63:6364–6371CrossRefGoogle Scholar
  13. Blackburn N (1981) Protein digestibility and absorption: effects of fibre, and the extent of individual variation. Jt FAO/WHO/UNU Expert Consult Energy Protein Requir 15Google Scholar
  14. Blakeney AB, Flinn PC (2005) Determination of non-starch polysaccharides in cereal grains with near-infared reflectance spectroscopy. Mol Nutr Food Res 49:546–550PubMedCrossRefGoogle Scholar
  15. Bowsher CG, Scrase-Field EFAL, Esposito S, Emes MJ, Tetlow IJ (2007) Characterisation of ADP-glucose transport across the cereal endosperm amyloplast envelope. J Exp Bot 58:1321–1332PubMedCrossRefGoogle Scholar
  16. BSTID-NRC (Board on Science and Technology for International Development, Office of International Affairs, National Research Council, USA) (1996) Sorghum. In: Lost crops of africa, vol 1. Grains. National Academy of Sciences, pp 127–144Google Scholar
  17. Buleon A, Gallant DJ, Bouchet B, Mouille G, D’Hulst C, Kossman J, Ball S (1997) Starches from A to C (Chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal. Plant Physiol 115:949–957PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotechnol J 9:117–135PubMedCrossRefGoogle Scholar
  19. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311:1940e1942Google Scholar
  20. Campbell BC, Gilding EK, Timbrell V, Guru P, Loo D et al (2015) Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. J Allergy Clin Immunol 135:133–142PubMedCrossRefGoogle Scholar
  21. Campbell BC, Gilding EK, Mace ES, Tai S, Tao Y, Prentis PJ, Thomelin P, Jordan DR, Godwin ID (2016) Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. Plant Biotechnol J. doi: 10.1111/pbi.12578 PubMedCentralGoogle Scholar
  22. Carciofi M, Blennow A, Jensen SL, Shaik SS, Henriksen A, Buleon A, Holm PB, Hebelstrup KH (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12:223PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chan SSL, Ferguson EL, Bailey K, Fahmida U, Harper TB, Gibson RS (2007) The concentrations of iron, calcium, zinc and phytate in cereals and legumes habitually consumed by infants living in East Lombok, Indonesia. J Food Comp Anal 20:609–617CrossRefGoogle Scholar
  24. Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC (2005) Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J Agric Food Chem 53:2717–2725. doi: 10.1021/jf048376+ PubMedCrossRefGoogle Scholar
  25. Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD (2012) XAX1 from glycosyltransferase family 61 meduates xylosyl transfer to rice xylan. Proc Natl Acad Sci USA 109:17117–17122PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chrimes D, Rogers HJ, Francis D, Jones HD, Ainsworth C (2005) Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat. New Phytol 166:185–192PubMedCrossRefGoogle Scholar
  27. Collins HM, Burton RA, Topping Dl, Liao M-L, Bacic A, Fincher GB (2010) Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem 87, 272e282 Google Scholar
  28. Cremer JE, Bean SR, Tilley MM, Ioerger BP, Ohm JB et al (2014a) Grain sorghum proteomics: integrated approach toward characterization of endosperm storage proteins in kafirin allelic variants. J Agric Food Chem 62:9819–9831PubMedCrossRefGoogle Scholar
  29. Cremer JE, Liu L, Bean SR, Ohm JB, Tilley M, Wilson JD, Kaufman RC, Vu TH, Gilding EK, Godwin ID, Wang D (2014b) Impacts of kafirin allelic diversity, starch content and digestibility on ethanol conversion efficiency in sorghum. Cereal Chem 91:218–227CrossRefGoogle Scholar
  30. Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose in maize (Zea mays L.) endosperm is extra-plastidial. Plant Physiol 112:779–785PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dicko MH, Gruppen H, Traoré AS, Voragen AGJ, van Berkel WJH (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5:384–395Google Scholar
  32. Dinges JR, Colleoni C, James MG, Myers AM (2003) Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15:666–680PubMedPubMedCentralCrossRefGoogle Scholar
  33. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)- β-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA 106:5996–6001PubMedPubMedCentralCrossRefGoogle Scholar
  34. Duodu K, Taylor JR, Belton P, Hamaker B (2003) Factors affecting sorghum protein digestibility. J Cereal Sci 38:117–131CrossRefGoogle Scholar
  35. El Tinay AH, Gadir AMA, El Hidai M (1979) Sorghum fermented kisra bread. I—nutritive value of kisra. J Sci Food Agri 30:859–863CrossRefGoogle Scholar
  36. Emmambux MN, Taylor JRN (2009) Properties of heat-treated sorghum and maize meal and their prolamin proteins. J Agric Food Chem 57:1045–1050PubMedCrossRefGoogle Scholar
  37. Eom J-S, Chen L-Q, Sosso D, Julius BT, Lin IW, Qu X-Q, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Op Plant Biol 25:53–62CrossRefGoogle Scholar
  38. Ermawar RA, Collins HM, Byrt CS, Betts NS, Henderson M, Shirley NJ, Schwerdt J, Lahnstein J, Fincher GB, Burton RA (2015) Distribution, structure and biosynthetic gene families of (1,3;1,4)-b-glucan in Sorghum bicolor. J Integr Biol 57:429–445CrossRefGoogle Scholar
  39. Frere CH, Prentis PJ, Gilding AK, Mudge AM, Cruickshank A, Godwin ID (2011) Lack of low frequency variants masks patterns of non-neutral evolution following domestication. PLoS ONE 6(8):e23041PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K (2009) Characterisation of pullulanase (PUL) mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gao M, Fisher DK, Kim K-N, Boyer CD, Guiltinan MJ (1997) Independent genetic control of maize starch branching enzymes IIa and IIb: isolation and characterisation of Sbe2a cDNA. Plant Physiol 114:69–78PubMedPubMedCentralCrossRefGoogle Scholar
  42. Garratt R, Oliva G, Caracelli I, Leite A, Arruda P (1993) Studies of the zein-like α-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure. Proteins 15:88–99PubMedCrossRefGoogle Scholar
  43. Gerland P, Raftery AE, Sevčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science 346:234–237PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gilding EK, Frere CH, Cruickshank A, Rada AK, Prentis PJ, Mudge AM, Mace ES, Jordan DR, Godwin ID (2013) Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nat Commun 4:1483PubMedCrossRefGoogle Scholar
  45. Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T (1996) A single gene mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829PubMedPubMedCentralCrossRefGoogle Scholar
  46. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  47. Godwin ID (2004) Sorghum genetic engineering: current status and prospects. In: Seetharama N, Godwin ID (eds) Sorghum tissue culture and transformation. Science Publisher, Enfield, NH, USA, pp 1–8Google Scholar
  48. Granfeldt Y, Drews A, Bjorck I (1995) Arepas made from high amylose corn flour produce favourable low glucose and insulin responses in healthy humans. J Nutr 125:459–465PubMedGoogle Scholar
  49. Greene TW, Hannah LC (1998) Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions. Proc Natl Acad Sci USA 95:13342–13347PubMedPubMedCentralCrossRefGoogle Scholar
  50. Grenier C, Ejeta G (2005) Sorghum and its weedy hybrids. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, FL, USA, pp 123–135CrossRefGoogle Scholar
  51. Hallström E, Sestili F, Lafiandra D, Bjorck I, Ostman E (2011) A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food Nutr Res 55:7074CrossRefGoogle Scholar
  52. Hamaker BR, Bugusu BA (2003) Overview: sorghum proteins and food quality. In: Belton PS, Taylor JRN (eds) Workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for africa (AFRIPRO), pp 2–4. Available via Afripro Conference Proceedings,
  53. Hamaker BR, Mohamed AA, Habben JE, Huang CP, Larkins BA (1995) Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chem 72:583–588Google Scholar
  54. Hannah LC, Futch B, Bung J, Shaw J, Boehlein S, Stewart JD, Beiriger R, Georgelis N, Greene T (2012) A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell 24:2352–2363PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hariprasanna K, Agte V, Elangovan M, Patil JV (2014) Genetic variability for grain iron and zinc content in cultivars, breeding lines and selected germplasm accessions of sorghum (Sorghum bicolor (L.) Moench]. Indian J Genet Plant Breed 74:42–49CrossRefGoogle Scholar
  56. Hayes CM, Burow GB, Brown PJ, Thurber C, Xin ZG, Burke, JJ (2015) Natural variation in synthesis and catabolism genes influences dhurrin content in sorghum. Plant Genome 8. doi: 10.3835/plantgenome2014.09.0048
  57. Hedman KD, Boyer CD (1982) Allelic studies of the Amylose-Extender locus of Zea mays: levels of the starch branching enzymes. Biochem Genet 20:483–492PubMedCrossRefGoogle Scholar
  58. Henley EC, Taylor JRN, Obukosia SD (2010) The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified sorghum. In: Taylor SL (ed) Advances in food and nutrition research, vol 60., Academic PressSan Diego, CA, USA, pp 21–52Google Scholar
  59. Izquierdo L, Godwin ID (2005) Molecular characterization of a novel methionine-rich delta-kafirin seed storage protein gene in sorghum (Sorghum bicolor L.). Cereal Chem 82:706–710CrossRefGoogle Scholar
  60. Jadhav SJ, Lutz SE, Ghorpade VM, Salunkhe DK (1998) Barley: chemistry and value-added processing. Crit Rev Food Sci Nutr 38:123–171PubMedCrossRefGoogle Scholar
  61. Jiang L, Yu X, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C, Liu B, Pang J (2013) Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgen Res 22:1133–1142CrossRefGoogle Scholar
  62. Kang G, Liu G, Peng X, Wei L, Wang C, Zhu Y, Ma Y, Jiang Y, Guo T (2013) Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic APGase large subunit gene. Plant Physiol Biochem 73:93–98PubMedCrossRefGoogle Scholar
  63. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29PubMedPubMedCentralCrossRefGoogle Scholar
  64. Karper RE (1933) Inheritance of waxy endosperm in sorghum. J Hered 24:257–262CrossRefGoogle Scholar
  65. Kirchberger S, Leroch M, Huynen MA, Wahl M, Neuhaus HE, Tjaden J (2007) Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J Biol Chem 282:22481–22491PubMedCrossRefGoogle Scholar
  66. Laidlaw HKC, Mace ES, Williams SB, Sakrewski K, Mudge AM, Prentis PJ, Jordan DR, Godwin ID (2010) Allelic variation of the β-, γ- and δ-kafirin genes in diverse Sorghum genotypes. Theor Appl Genet 121:1227–1237PubMedCrossRefGoogle Scholar
  67. Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal b-glucan functionality:physical properties, technological applications and physiological effects. J Cereal Sci 46:101e118Google Scholar
  68. Lee S-M, Lee Y-H, Kim H, Seo S, Kwon S et al (2010) Characterisation of the potato upreg1 gene, encoding a mutated ADP-glucose pyrophosphorylase large subunit, in transformed rice. Plant Cell Tiss Org Cult 102:171–179CrossRefGoogle Scholar
  69. Li J, Baroja-Fernandez E, Bahaji A, Munoz FJ, Ovecka M, Montero M, Semsa MT, Alonso-Casajus N, Almagro G, Sanchez-Lopez AM, Hidalso M, Zamarbide M, Pozuate-Romero J (2013) Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol 54:282–294PubMedCrossRefGoogle Scholar
  70. Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Overexpression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250PubMedCrossRefGoogle Scholar
  71. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642PubMedCrossRefGoogle Scholar
  72. Liu G, Campbell BC, Godwin ID (2014) Sorghum genetic transformation by particle bombardment. In: Henry RJ, Furtado A (eds) Cereal genomics: methods and protocols, methods in molecular biology, vol 1099, pp 219–234Google Scholar
  73. Lovegrove A, Wilkinson MD, Freeman F, Pellny TK, Tosi P, Saulnier L, Shewry PR, Mitchell RAC (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol 163:95e107CrossRefGoogle Scholar
  74. Luo H, Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, Bekele WA, Tai S, Jordan DR, Godwin ID, Snowdon RJ, Mace ES, Jing HC, Luo J (2016) SorGSD: a sorghum genome SNP database. Biotech Biofuels 9:6. doi: 10.1186/s13068-015-0415-8
  75. Mace ES, Hunt CH, Jordan DR (2013a) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126:1377–1395PubMedCrossRefGoogle Scholar
  76. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ et al (2013b) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Comm 4:2320. doi: 10.1038/ncomms3320 Google Scholar
  77. Maclean WC, Lopez De Romana G, Placko RP, Graham GG (1981) Protein quality and digestibility of sorghum in preschool children: balance studies and plasma free amino acids. J Nutr 111:1928–1936Google Scholar
  78. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963PubMedPubMedCentralCrossRefGoogle Scholar
  79. Meyer FD, Talbot LE, Martin JM, Lanning SP, Greene TW, Giroux MJ (2007) Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci 47:336–342CrossRefGoogle Scholar
  80. Mindaye TT, Mace ES, Godwin ID, Jordan DR (2015) Genetic differentiation analysis for the identification of complementary parental pools for sorghum hybrid breeding in Ethiopia. Theor Appl Genet 128:1765–1775PubMedCrossRefGoogle Scholar
  81. Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43e53Google Scholar
  82. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 11-:453–458Google Scholar
  83. Nagai YS, Sakulsingharoj C, Edwards GE, Satoh H, Greene TW, Blakeslee B, Okita TW (2009) Control of starch synthesis in cereals: metabolite analysis of transgenic rice expressing an up-regulated cytoplasmic ADP-glucose pyrophosphorylase in developing seeds. Plant Cell Physiol 50:635–643PubMedCrossRefGoogle Scholar
  84. Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, Wilkinson MD, Dunwell J, Andersson AAM, Aman P, Guillon F, Saulnier L, Mitchell RAC, Shewry PR (2010) Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-beta-D-glucan in endosperm of wheat. Plant Physiol 152, 1209e1218Google Scholar
  85. Niba LL, Hoffman J (2003) Resistant starch and b-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chem 81, 113e118Google Scholar
  86. Nugent AP (2005) Health properties of resistant starch. Nutr Bull 30:27e54Google Scholar
  87. Nugent AP (2005b) Health properties of resistant starch. Br Nutr Foundation Nutr Bull 30:27–54CrossRefGoogle Scholar
  88. Oria MP, Hamaker BR, Axtell JD, Huang CP (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci USA 97:5065–5070PubMedPubMedCentralCrossRefGoogle Scholar
  89. Paterson AH, Bowers JE, Bruggmann R, Dabchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  90. Pedersen JF, Graybosch RA, Funnell DL (2007) Occurrence of the waxy alleles wxa and wxb in waxy sorghum plant introductions and their effect on starch thermal properties. Crop Sci 47:1927–1933CrossRefGoogle Scholar
  91. Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox JP et al (2012) Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol 158:612–627PubMedCrossRefGoogle Scholar
  92. Pontieri P, Mamone G, De Caro S, Tuinstra MR, Roema E et al (2013) Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J Agric Food Chem. doi: 10.1021/jf304882k PubMedGoogle Scholar
  93. Prasad MP, Rao BD, Kalpana K, Rao MV, Patil JV (2015) Glycaemic index and glycaemic load of sorghum products. J Sci Food Agri 95:1626–1630CrossRefGoogle Scholar
  94. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High amylose wheat generated by RNA interference improves indices of large-bowel heath in rats. Proc Natl Acad Sci USA 103:3546–3551PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rakshit S, Hariprasanna K, Gomashe S, Ganapathy KN, Das IK, Ramana OV, Dhandapani A, Patil JV (2014) Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci 54(4):1571–1584CrossRefGoogle Scholar
  96. Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp PJ, Morell MK, Rahman S (2005) Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222:899–909PubMedCrossRefGoogle Scholar
  97. Regina A, Kosar-Hashemi B, Ling S, Li Z, Rahman S, Morell M (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61:1469–1482PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ritter KB, McIntyre CL, Jordan DR, Chapman SC, Mace ES, Godwin ID (2008) Identification of QTL for sugar-related traits in sweet x grain sorghum (Sorghum bicolor L. Moench) inbred population. Mol Breed 22:376–384CrossRefGoogle Scholar
  99. Rooney LW, Pflugfelder RL (1986) Factors affecting starch digestibility with special emphasis on sorghum and corn. J Anim Sci 63:1607–1623PubMedCrossRefGoogle Scholar
  100. Rooney LW, Miller FR, Mertin JV (1981) Variation in the structure and kernel characteristics of sorghum. Proc Int Sym Sorghum Grain Qual, ICRISAT, Patancheru, India, pp 143–162Google Scholar
  101. Rooney TE, Rooney WL (2013) Genotype and environment effects on the popping characteristics of grain sorghum. J Crop Improv 27:460–468CrossRefGoogle Scholar
  102. Serrago RA, Alzueta I, Savin R, Slafer GA (2013) Understanding grain yield responses to source-sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Res 150:42–51CrossRefGoogle Scholar
  103. Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones HD, Lafiandra D (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10:144PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shewayrga H, Sopade PA, Jordan DR, Godwin ID (2012) Characterisation of grain quality in diverse sorghum germplasm using a Rapid Visco-Analyzer and near infrared reflectance spectroscopy. J Sci Food Agri 92:1402–1410CrossRefGoogle Scholar
  105. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958PubMedCrossRefGoogle Scholar
  106. Shull JM, Watterson JJ, Kirleis AW (1992) Purification and immunocytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm. Protoplasma 171:64–74CrossRefGoogle Scholar
  107. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99:1724–1729PubMedPubMedCentralCrossRefGoogle Scholar
  108. Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664PubMedGoogle Scholar
  109. Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylasae large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225:965–976PubMedCrossRefGoogle Scholar
  110. Sosso D, Luo D, Li Q-B, Sasse J, Yang J, Gendrot G, Suzuki M, Kock KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1496Google Scholar
  111. Sun C, Sathish P, Ahlandsberg S, Jansson C (1998) The two genes encoding starch-branching enzymes IIA and IIb are differentially expressed in barley. Plant Physiol 118:37–49PubMedPubMedCentralCrossRefGoogle Scholar
  112. Takeda Y, Hizukuri S, Juliano BO (1986) Purification and structure of amylose from rice starch. Carbohydr Res 148:299–308CrossRefGoogle Scholar
  113. Takeda Y, Hizukuri S, Juliano BO (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168:79–88CrossRefGoogle Scholar
  114. Taketa S, Yuo T, Tonooka T, Tsumuraya Y, Inagaki Y, Haruyama N et al (2012) Functional characterization of barley betaglucan less mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J Exp Biol 63:381–392Google Scholar
  115. Taylor JRN, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271CrossRefGoogle Scholar
  116. Thorbjørnsen TP, Denyer K, Olsen O-A, Smith AM (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplast in barley endosperm. Plant J 10:243–250Google Scholar
  117. Topping D (2007) Cereal complex carbohydrates and their contribution to human health. J Cereal Sci 46:220–229CrossRefGoogle Scholar
  118. Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of ADPglucose purophosphorylase: expectations and unanticipated results. Plant Sci 211:52–60PubMedCrossRefGoogle Scholar
  119. Verbruggen MA, Beldman G, Voragen AGJ, Hollemans M (1993) Water-unextractable cell wall material from sorghum: isolation and characterization. J Cereal Sci 17, 71e82Google Scholar
  120. Wang X, Mace E, Hunt C, Cruickshank A, Henzell R, Parkes H, Jordan D (2014) Two distinct classes of QTL determine rust resistance in sorghum. BMC Plant Biol 1:366–379CrossRefGoogle Scholar
  121. Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G (2007) Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tiss Org Cult 88:83–92CrossRefGoogle Scholar
  122. Watterson JJ, Shull JM, Kirleis AW (1993) Quantitation of α-, β-, and γ-kafirins in vitreous and opaque endosperm of Sorghum bicolor. Cereal Chem 70:452–457Google Scholar
  123. Wong JH, Lau T, Cai N, Singh J, Pedersen JF et al (2009) Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. J Cereal Sci 49:73–82CrossRefGoogle Scholar
  124. Wong JH, Marx DB, Wilson JD, Buchanan BB, Lemaux PG, Pedersen JF (2010) Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain. Plant Sci 179:598–611CrossRefGoogle Scholar
  125. Wu Y, Yuan L, Guo X, Holding DR, Messing J (2013) Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nat Comm 4:2217. doi: 10.1038/ncomms3217 Google Scholar
  126. Wu XR, Folk WR, Mutisya J (2009) Modification of sorghum seed composition to improve health and nutrition of small farmholders. In: Krishnan H (ed) Modification of seed composition to promoter health and nutrition, american society for agronomy/crop science society of america/soil science society of america, agronomy monograph 51. Madison, WI, USA, pp 263–269Google Scholar
  127. Xin ZG, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi: 10.1186/1471-2229-8-103 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Xu JH, Messing J (2008) Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci USA 105:14330–14335PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhu L, Gu M, Meng X, Cheung SCK, Yu H, Huang J, Sun Y, Shi Y, Lui Q (2012) High amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol J 10:353–362PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Stephen R. Mudge
    • 1
  • Bradley C. Campbell
    • 1
  • Nurazilah B. Mustapha
    • 1
  • Ian D. Godwin
    • 1
    Email author
  1. 1.School of Agriculture and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations