Stochastic Dynamic Programming for Noise Load Management

  • T. R. Meerburg
  • Richard J. BoucherieEmail author
  • M. J. A. L. van Kraaij
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 248)


Noise load reduction is among the primary performance targets for some airports. For airports with a complex lay-out of runways, runway selection may then be carried out via a preference list, an ordered set of runway combinations such that the higher on the list a runway combination, the better this combination is for reducing noise load. The highest safe runway combination in the list will actually be used. The optimal preference list selection minimises the probability of exceeding the noise load limit at the end of the aviation year. This paper formulates the preference list selection problem in the framework of Stochastic Dynamic Programming that enables determining an optimal strategy for the monthly preference list selection problem taking into account future and unpredictable weather conditions, as well as safety and efficiency restrictions. The resulting SDP has a finite horizon (aviation year), continuous state space (accumulated noise load), time-inhomogeneous transition densities (monthly weather conditions) and one-step rewards zero. For numerical evaluation of the optimal strategy, we have discretised the state space. In addition, to reduce the size of the state space we have lumped into a single state those states that lie outside a cone of states that may achieve the noise load restrictions. Our results indicate that the SDP approach allows for optimal preference list selection taking into account uncertain weather conditions.


Noise load management Stochastic dynamic programming Airport Runway preference list selection 


  1. 1.
    Aeronautical Information Publication, the Netherlands,
  2. 2.
    D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, Belmont, 1996)Google Scholar
  3. 3.
    Frontier Information Technologies B.V.,
  4. 4.
    S.P. Galis, M.A. Brouwer, T. Joustra, Optimization of yearly airport capacity within noise limits at Schiphol Airport, in The 33rd International Congress and Exposition on Noise Control Engineering, 2004,$_$scholieren$_$studenten/pdf/pdf$_$files/noise$_$management$_$v1$_$m56577569830678617.pdf Google Scholar
  5. 5.
    A. Genz, Numerical computation of the multivariate normal probabilities. J. Comput. Graph. Stat. 1, 141–150 (1992)Google Scholar
  6. 6.
    H.J. Kushner, P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time (Springer, New York, 2001)CrossRefGoogle Scholar
  7. 7.
    A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, 2nd edn. (McGraw-Hill, New York, 1991)Google Scholar
  8. 8.
    Luchthavenverkeerbesluit Schiphol – Besluit van 26 November 2002, tot vaststelling van een luchthavenverkeerbesluit voor de luchthaven Schiphol,$_$tcm163-90970$_$tcm195-162956.pdf
  9. 9.
    T.R. Meerburg, Noise load management at Schiphol – a stochastic dynamic approach. MSc Thesis, Applied Mathematics, University of Twente (2006), Google Scholar
  10. 10.
    M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley, New York, 1994)CrossRefGoogle Scholar
  11. 11.
    R.S. Sutton, A.G. Barto, Reinforcement Learning (MIT Press, Cambridge, 1998)Google Scholar
  12. 12.
    The MathWorks, Inc.,
  13. 13.
    H.M.M. van der Wal, P. Vogel, F.J.M. Wubben, Voorschrift voor de berekening van de L den en L night geluidbelasting in dB(A) ten gevolge van vliegverkeer van en naar de luchthaven Schiphol. NLR-CR-2001-372, National Aerospace Laboratory NLR (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • T. R. Meerburg
    • 1
  • Richard J. Boucherie
    • 2
    Email author
  • M. J. A. L. van Kraaij
    • 1
  1. 1.Air Traffic Control the NetherlandsSchipholthe Netherlands
  2. 2.Stochastic Operations ResearchUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations