Advertisement

Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity

  • Ceyda Oksel
  • Cai Y. Ma
  • Jing J. Liu
  • Terry Wilkins
  • Xue Z. WangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 947)

Abstract

Despite the clear benefits that nanotechnology can bring to various sectors of industry, there are serious concerns about the potential health risks associated with engineered nanomaterials (ENMs), intensified by the limited understanding of what makes ENMs toxic and how to make them safe. As the use of ENMs for commercial purposes and the number of workers/end-users being exposed to these materials on a daily basis increases, the need for assessing the potential adverse effects of multifarious ENMs in a time- and cost-effective manner becomes more apparent. One strategy to alleviate the problem of testing a large number and variety of ENMs in terms of their toxicological properties is through the development of computational models that decode the relationships between the physicochemical features of ENMs and their toxicity. Such data-driven models can be used for hazard screening, early identification of potentially harmful ENMs and the toxicity-governing physicochemical properties, and accelerating the decision-making process by maximising the use of existing data. Moreover, these models can also support industrial, regulatory and public needs for designing inherently safer ENMs. This chapter is mainly concerned with the investigation of the applicability of (quantitative) structure-activity relationship ((Q)SAR) methods to modelling of ENMs’ toxicity. It summarizes the key components required for successful application of data-driven toxicity prediction techniques to ENMs, the published studies in this field and the current limitations of this approach.

Keywords

Nanomaterial toxicity Nanotoxicology QSAR NanoSAR In silico toxicity prediction 

Notes

Acknowledgements

The authors would like to acknowledge financial support from EU FP7 (Project: 236215, –Managing Risks of Nanomaterials (MARINA)) and the UK Department for Environment, Food & Rural Affairs (Project: 17857, Development and Evaluation of QSAR Tools for Hazard Assessment and Risk Management of Manufactured Nanoparticles) in support of the EU FP7 project entitled NANoREG: A common European approach to the regulatory testing of nanomaterials (FP7-NMP-2012-LARGE). We are also grateful to Kirsten Rasmussen for her comments and suggestions on an earlier version of this manuscript.

References

  1. 1.
    Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles–a practical approach. Iran J Mater Sci Eng 8:48–56Google Scholar
  2. 2.
    Andres C, Hutter MC (2006) CNS permeability of drugs predicted by a decision tree. QSAR Combin Sci 25:305–309CrossRefGoogle Scholar
  3. 3.
    Arena VC, Sussman NB, Mazumdar S, Yu S, Macina OT (2004) The utility of structure–activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ Res 15:1–18PubMedCrossRefGoogle Scholar
  4. 4.
    Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165PubMedCrossRefGoogle Scholar
  5. 5.
    Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291:65–72PubMedCrossRefGoogle Scholar
  6. 6.
    Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396:983–1002PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Baskin I, Ait A, Halberstam N, Palyulin V, Zefirov N (2002) An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res 13:35–41PubMedCrossRefGoogle Scholar
  8. 8.
    Bengio Y, Delalleau O, Simard C (2010) Decision trees do not generalize to new variations. Comput Intell 26:449–467CrossRefGoogle Scholar
  9. 9.
    Benigni R, Passerini L, Livingstone DJ, Johnson MA, Giuliani A (1999) Infrared spectra information and their correlation with QSAR descriptors. J Chem Inf Comput Sci 39:558–562CrossRefGoogle Scholar
  10. 10.
    Bhattacharjee S, De Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H, Rietjens IM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bootz A, Vogel V, Schubert D, Kreuter J (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57:369–375PubMedCrossRefGoogle Scholar
  12. 12.
    Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Weller H (2005) Determination of nanocrystal sizes: a comparison of tem, saxs, and xrd studies of highly monodisperse CoPt3 particles. Langmuir 21:1931–1936PubMedCrossRefGoogle Scholar
  13. 13.
    Boverhof DR, David RM (2010) Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396:953–961PubMedCrossRefGoogle Scholar
  14. 14.
    Boyd RD, Pichaimuthu SK, Cuenat A (2011) New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf A Physicochem Eng Asp 387:35–42CrossRefGoogle Scholar
  15. 15.
    Brooks RW, Wilson JG (2011). Method and a system for operating a controllable multi-variable process. US Patent No 7916140Google Scholar
  16. 16.
    Brown AC, Fraser TR (1868) V.—On the connection between chemical constitution and physiological action. Part. I.—On the physiological action of the salts of the ammonium bases, derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. Transact Royal Soc Edinburgh 25:151–203CrossRefGoogle Scholar
  17. 17.
    Buontempo FV, Wang XZ, Mwense M, Horan N, Young A, Osborn D (2005) Genetic programming for the induction of decision trees to model ecotoxicity data. J Chem Inf Model 45:904–912PubMedCrossRefGoogle Scholar
  18. 18.
    Burden FR, Winkler DA (1999) Robust QSAR models using Bayesian regularized neural networks. J Med Chem 42:3183–3187PubMedCrossRefGoogle Scholar
  19. 19.
    Burello E, Worth A (2011) QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:298–306PubMedCrossRefGoogle Scholar
  20. 20.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:Mr17–Mr71PubMedCrossRefGoogle Scholar
  21. 21.
    Caballero-Díaz E, Pfeiffer C, Kastl L, Rivera-Gil P, Simonet B, Valcárcel M, Jiménez-Lamana J, Laborda F, Parak WJ (2013) The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Charact 30(12):1079–1085CrossRefGoogle Scholar
  22. 22.
    Chau YT, Yap CW (2012) Quantitative nanostructure–activity relationship modelling of nanoparticles. RSC Adv 2:8489–8496CrossRefGoogle Scholar
  23. 23.
    Cramer RD, Bunce JD, Patterson DE, Frank IE (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25CrossRefGoogle Scholar
  24. 24.
    Czermiński R, Yasri A, Hartsough D (2001) Use of support vector machine in pattern classification: application to QSAR studies. Quant Struct Act Relat 20:227–240CrossRefGoogle Scholar
  25. 25.
    Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605PubMedCrossRefGoogle Scholar
  26. 26.
    Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284PubMedCrossRefGoogle Scholar
  27. 27.
    Dunn W, Wold S, Edlund U, Hellberg S, Gasteiger J (1984) Multivariate structure-activity relationships between data from a battery of biological tests and an ensemble of structure descriptors: the PLS method. Quant Struct Act Relat 3:131–137CrossRefGoogle Scholar
  28. 28.
    Edelstein AS, Cammaratra R (1998) Nanomaterials: synthesis, properties and applications. CRC Press, New YorkGoogle Scholar
  29. 29.
    Epa VC, Burden FR, Tassa C, Weissleder R, Shaw S, Winkler DA (2012) Modeling biological activities of nanoparticles. Nano Lett 12:5808–5812PubMedCrossRefGoogle Scholar
  30. 30.
    Eriksson L, Gottfries J, Johansson E, Wold S (2004) Time-resolved QSAR: an approach to PLS modelling of three-way biological data. Chemom Intel Lab Syst 73:73–84CrossRefGoogle Scholar
  31. 31.
    Fadel TR, Steevens JA, Thomas TA, Linkov I (2015) The challenges of nanotechnology risk management. Nanotoday 10:6–10CrossRefGoogle Scholar
  32. 32.
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750PubMedCrossRefGoogle Scholar
  33. 33.
    Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure− activity relationship modeling. ACS Nano 4:5703–5712PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64(15):1663–1693PubMedCrossRefGoogle Scholar
  35. 35.
    Gajewicz AEA (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64:1663–1693PubMedCrossRefGoogle Scholar
  36. 36.
    Gallegos SA, Burello E, Worth A (2009) Review of computational approaches for predicting the physicochemical and biological properties of nanoparticles [online]. European Commission, ItalyGoogle Scholar
  37. 37.
    Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recogn Lett 31:2225–2236CrossRefGoogle Scholar
  38. 38.
    Glawdel T, Ren C (2008) Zeta potential measurement. Encyclopedia of microfluidics and nanofluidics. Springer, New YorkGoogle Scholar
  39. 39.
    Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562PubMedCrossRefGoogle Scholar
  40. 40.
    Goodarzi M, Saeys W, Deeb O, Pieters S, Vander Heyden Y (2013) Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo [1, 5-a] pyrido [3, 2-e] pyrazines, inhibitors of phosphodiesterase 10a. Chem Biol Drug Des 82:685–696PubMedCrossRefGoogle Scholar
  41. 41.
    Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, Desimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Greene N, Judson P, Langowski J, Marchant C (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10:299–314PubMedCrossRefGoogle Scholar
  43. 43.
    Gu C, Goodarzi M, Yang X, Bian Y, Sun C, Jiang X (2012) Predictive insight into the relationship between ahr binding property and toxicity of polybrominated diphenyl ethers by PLS-derived QSAR. Toxicol Lett 208:269–274PubMedCrossRefGoogle Scholar
  44. 44.
    Guha R, Stanton DT, Jurs PC (2005) Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. J Chem Inf Model 45:1109–1121PubMedCrossRefGoogle Scholar
  45. 45.
    Gurr J-R, Wang AS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73PubMedCrossRefGoogle Scholar
  46. 46.
    Guyon I, Elisseeff A (2003) An Introduction To Variable And Feature Selection. J Mach Learn Res 3:1157–1182Google Scholar
  47. 47.
    Gwaze P, Annegarn HJ, Huth J, Helas G (2007) Comparison of particle sizes determined with impactor, AFM and SEM. Atmos Res 86:93–104CrossRefGoogle Scholar
  48. 48.
    Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2006) Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR. J Mol Model 12:338–347PubMedCrossRefGoogle Scholar
  49. 49.
    Han L, Wang Y, Bryant SH (2008) Developing and validating predictive decision tree models from mining chemical structural fingerprints and high–throughput screening data in PubChem. BMC Bioinf 9:401CrossRefGoogle Scholar
  50. 50.
    Hansch C (1969) Quantitative approach to biochemical structure-activity relationships. Acc Chem Res 2:232–239CrossRefGoogle Scholar
  51. 51.
    Hasegawa K, Miyashita Y, Funatsu K (1997) GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists⊥. J Chem Inf Comput Sci 37:306–310PubMedCrossRefGoogle Scholar
  52. 52.
    Hassellöv M, Kaegi R (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments. Wiley, LondonCrossRefGoogle Scholar
  53. 53.
    Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6:1–19PubMedCrossRefGoogle Scholar
  54. 54.
    Hoo CM, Starostin N, West P, Mecartney ML (2008) A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 10:89–96CrossRefGoogle Scholar
  55. 55.
    Horie M, Fujita K (2011) Toxicity of metal oxides nanoparticles. Adv Mol Toxicol 5:145–178CrossRefGoogle Scholar
  56. 56.
    Hosokawa M, Nogi K, Naito M, Yokoyama T (2007) Nanoparticle technology handbook. Elsevier, AmsterdamGoogle Scholar
  57. 57.
    Inselberg A (2009) Parallel coordinates: visual multidimensional geometry and its applications. Springer, New YorkCrossRefGoogle Scholar
  58. 58.
    Jalali-Heravi M, Asadollahi-Baboli M, Shahbazikhah P (2008) QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg–Marquardt algorithm. Eur J Med Chem 43:548–556PubMedCrossRefGoogle Scholar
  59. 59.
    Jaworska J, Aldenberg T, Nikolova N (2005) Review of methods for assessing the applicability domains of SARS and QSARS. Altern Lab Anim 33:445–459PubMedGoogle Scholar
  60. 60.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41:2699–2711CrossRefGoogle Scholar
  61. 61.
    Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  62. 62.
    Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kar S, Gajewicz A, Puzyn T, Roy K (2014) Nano-quantitative structure–activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol In Vitro 28:600–606PubMedCrossRefGoogle Scholar
  64. 64.
    Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188:112–118PubMedCrossRefGoogle Scholar
  65. 65.
    Kübart SA, Keck CM (2013) Laser diffractometry of nanoparticles: frequent pitfalls & overlooked opportunities. J Pharma Technol Drug Res 2:17CrossRefGoogle Scholar
  66. 66.
    Kubinyi H (2008) QSAR, QSAR: Hansch analysis and related approaches. Wiley, New YorkGoogle Scholar
  67. 67.
    Laidlaw, I. & Steinmetz, M. 2005. Introduction to differential sedimentation. Analytical ultracentrifugation. The Royal Society of Chemistry, Cambridge, pp 270–290.Google Scholar
  68. 68.
    Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure–property relationship modeling of diverse materials properties. Chem Rev 112:2889–2919PubMedCrossRefGoogle Scholar
  69. 69.
    Lee D-H, Cho G, Lim HM, Kim DS, Kim C, Lee S-H (2013) Comparisons of particle size measurement method for colloidal silica. J Ceram Process Res 14:274–278Google Scholar
  70. 70.
    Lin W, Xu Y, Huang C-C, Ma Y, Shannon KB, Chen D-R, Huang Y-W (2009) Toxicity of nano-and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39CrossRefGoogle Scholar
  71. 71.
    Liu J, Hopfinger AJ (2008) Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure − activity relationship analysis. Chem Res Toxicol 21:459–466PubMedCrossRefGoogle Scholar
  72. 72.
    Liu R, Rallo R, Weissleder R, Tassa C, Shaw S, Cohen Y (2013a) Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries. Small 9(9–10):1842–1852PubMedCrossRefGoogle Scholar
  73. 73.
    Liu R, Zhang HY, Ji ZX, Rallo R, Xia T, Chang CH, Nel A, Cohen Y (2013b) Development of structure-activity relationship for metal oxide nanoparticles. Nanoscale 5(12):5644–5653PubMedCrossRefGoogle Scholar
  74. 74.
    Lubinski L, Urbaszek P, Gajewicz A, Cronin M, Enoch S, Madden J, Leszczynska D, Leszczynski J, Puzyn T (2013) Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling. SAR QSAR Environ Res 24:995–1008PubMedCrossRefGoogle Scholar
  75. 75.
    Luco JM (1999) Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci 39:396–404PubMedCrossRefGoogle Scholar
  76. 76.
    Ma CY, Buontempo FV, Wang XZ (2008) Inductive data mining: automatic generation of decision trees from data for QSAR modelling and process historical data analysis. Comput Aided Chem Eng 25:581–586CrossRefGoogle Scholar
  77. 77.
    Ma CY, Wang XZ (2009) Inductive data mining based on genetic programming: automatic generation of decision trees from data for process historical data analysis. Comput Chem Eng 33:1602–1616CrossRefGoogle Scholar
  78. 78.
    Ma CY, Wang XZ (2011) Simultaneous characterization of multiple properties of solid and liquid phases in crystallization processes using NIR. Particuology 9:589–597CrossRefGoogle Scholar
  79. 79.
    Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125PubMedCrossRefGoogle Scholar
  80. 80.
    Mei H, Zhou Y, Liang G, Li Z (2005) Support vector machine applied in QSAR modelling. Chin Sci Bull 50:2291–2296CrossRefGoogle Scholar
  81. 81.
    Monteiro-Riviere NA, Tran CL (2007) Nanotoxicology: characterization, dosing and health effects. CRC Press, Boca RatonCrossRefGoogle Scholar
  82. 82.
    Napierska D, Thomassen L, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nguyen KC, Seligy VL, Massarsky A, Moon TW, Rippstein P, Tan J, Tayabali AF (2013). Comparison of toxicity of uncoated and coated silver nanoparticles. J Phys Conf Series. IOP Publishing, 012025Google Scholar
  84. 84.
    Niu B, Su Q, Yuan X, Lu W, Ding J (2012) QSAR study on 5-lipoxygenase inhibitors based on support vector machine. Med Chem 8:1108–1116PubMedGoogle Scholar
  85. 85.
    Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, Group, A. R. F. T. I. R. F. R. S. I. N. T. S. W (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    OECD (2007) Guidance document on the validation of (quantitative)structure-activity relationships [(Q)SAR] models. OECD Environment Health and Safety Publications, P.03.03Google Scholar
  87. 87.
    OECD (2009) OECD database on research into the safety of manufactured nanomaterials. OECD Environment Directorate, Environment, Health and Safety Division, Paris/FranceGoogle Scholar
  88. 88.
    OECD (2010) Guidance manual for the testing of manufactured nanomaterials: OECD’s sponsorship programme. Env/Jm/Mono(2009)20/Rev, Organization for Economic Co-operation and Development, ParisGoogle Scholar
  89. 89.
    Overton E (1901) Studien über die narkose zugleich ein Beitrag zur allgemeinen pharmakologie. Gustav Fischer, JenaGoogle Scholar
  90. 90.
    Park MV, Neigh AM, Vermeulen JP, De La Fonteyne LJ, Verharen HW, Briedé JJ, Van Loveren H, De Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817PubMedCrossRefGoogle Scholar
  91. 91.
    Park Y-H, Bae HC, Jang Y, Jeong SH, Lee HN, Ryu W-I, Yoo MG, Kim Y-R, Kim M-K, Lee JK (2013) Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol 9:67–74CrossRefGoogle Scholar
  92. 92.
    Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50PubMedCrossRefGoogle Scholar
  93. 93.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a Pilot study. Nat Nanotechnol 3:423–428PubMedCrossRefGoogle Scholar
  94. 94.
    Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of Nanoscale Particles for Toxicological Evaluation. Toxicological Sciences, 90(2):296–303Google Scholar
  95. 95.
    Powers KW, Carpinone PL, Siebein KN (2012) Characterization of nanomaterials for toxicological studies. Nanotoxicity. Springer, New YorkGoogle Scholar
  96. 96.
    Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51CrossRefGoogle Scholar
  97. 97.
    Puzyn T, Leszczynska D, Leszczynski J (2009) Toward the development of “nano-QSARs”: advances and challenges. Small 5:2494–2509PubMedCrossRefGoogle Scholar
  98. 98.
    Puzyn T, Leszczynski J (2012) Towards efficient designing of safe nanomaterials: innovative merge of computational approaches and experimental techniques (no. 25). The Royal Society of Chemistry, LondonGoogle Scholar
  99. 99.
    Puzyn T, Leszczyński J, Cronin M (2010) Recent advances in QSAR studies: methods and applications. Springer, New YorkCrossRefGoogle Scholar
  100. 100.
    Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari T, Michalkova A, Hwang H, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178PubMedCrossRefGoogle Scholar
  101. 101.
    Qin SJ, Mcavoy TJ (1992) Nonlinear PLS modeling using neural networks. Comput Chem Eng 16:379–391CrossRefGoogle Scholar
  102. 102.
    Reddy AS, Kumar S, Garg R (2010) Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition. J Mol Graph Model 28:852–862PubMedCrossRefGoogle Scholar
  103. 103.
    Richet C, Seances CR (1893) Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales. Soc Biol Ses Fil 9:775–776Google Scholar
  104. 104.
    Rosipal R, Trejo LJ (2002) Kernel partial least squares regression in reproducing Kernel Hilbert space. J Mach Learn Res 2:97–123Google Scholar
  105. 105.
    Sadik OA (2013) Anthropogenic nanoparticles in the environment. Evnviron Sci Process Impacts 15:19–20CrossRefGoogle Scholar
  106. 106.
    Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17:4791–4810PubMedCrossRefGoogle Scholar
  107. 107.
    Savolainen K, Backman U, Brouwer D, Fadeel B, Fernandes T, Kuhlbusch T, Landsiedel R, Lynch I, Pylkkänen L (2013) Nanosafety in Europe 2015–2025: towards safe and sustainable nanomaterials and nanotechnology innovations. Helsinki, Finnish Institute Of Occupational HealthGoogle Scholar
  108. 108.
    Sayes C, Ivanov I (2010) Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal 30:1723–1734PubMedCrossRefGoogle Scholar
  109. 109.
    Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, Maccuspie RI, Afrooz AN, Vaia RA, Saleh NB, Hussain SM (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28:3248–3258PubMedCrossRefGoogle Scholar
  110. 110.
    Shahlaei M (2013) Descriptor selection methods in quantitative structure–activity relationship studies: a review study. Chem Rev 113:8093–8103PubMedCrossRefGoogle Scholar
  111. 111.
    Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343PubMedCrossRefGoogle Scholar
  112. 112.
    Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesn GT (2007) Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sharma R, Bisen D, Shukla U, Sharma B (2012) X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res Sci Technol 4(8):77–79Google Scholar
  114. 114.
    Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R (2008) Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci 105:7387–7392PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI (2005) Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708PubMedCrossRefGoogle Scholar
  116. 116.
    Singh KP, Gupta S (2014) Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Adv 4:13215–13230CrossRefGoogle Scholar
  117. 117.
    Supaka N (2012) Measurement and compare particle size determined by DLS, AFM and SEM. J Microsc Soc Thai 5:38–41Google Scholar
  118. 118.
    Sussillo D, Barak O (2013) Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput 25:626–649PubMedCrossRefGoogle Scholar
  119. 119.
    Sussman N, Arena V, Yu S, Mazumdar S, Thampatty B (2003) Decision tree SAR models for developmental toxicity based on an FDA/TERIS database. SAR QSAR Environ Res 14:83–96PubMedCrossRefGoogle Scholar
  120. 120.
    Tantra R, Boyd R, Cackett A, Fry AT, Gohil DD, Goldberg S, Lee JLS, Minelli C, Peck R, Quincey P, Smith S, Snowden J, Spencer S, Tompkins J, Wang J, Yang L (2012) NPL report: final report on the physico-chemical characterisation of prospect engineered nanomaterialsGoogle Scholar
  121. 121.
    Teixeira AL, Leal JP, Falcao AO (2013) Random forests for feature selection in QSPR models-an application for predicting standard enthalpy of formation of hydrocarbons. J Cheminf 5:1–15CrossRefGoogle Scholar
  122. 122.
    Thiele G, Poston M, Brown R (2010) A case study in sizing nanoparticles [Online]. Micromeritics Instrument Corporation. Available: http://www.micromeritics.com/repository/files/a_case_study_in_sizing_nano_particles.pdf. Accessed Dec 2013
  123. 123.
    Thomas DG, Gaheen S, Harper SL, Fritts M, Klaessig F, Hahn-Dantona E, Paik D, Pan S, Stafford GA, Freund ET (2013) ISA-TAB-nano: a specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol 13:2. doi: 10.1186/1472-6750-13-2 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV-VIS spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 60–70Google Scholar
  125. 125.
    Tougaard S (2005) XPS for quantitative analysis of surface nano-structures. Microsc Microanal 11(S02):676–677CrossRefGoogle Scholar
  126. 126.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488CrossRefGoogle Scholar
  127. 127.
    Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK (2011) Validation of QSAR models-strategies and importance. Int J Drug Design Discovery 3:511–519Google Scholar
  128. 128.
    Ventura C, Latino DA, Martins F (2013) Comparison of multiple linear regressions and neural networks based QSAR models for the design of new antitubercular compounds. Eur J Med Chem 70:831–845PubMedCrossRefGoogle Scholar
  129. 129.
    Von Der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49PubMedCrossRefGoogle Scholar
  130. 130.
    Wang XZ, Ma CY (2009) Morphological population balance model in principal component space. AICHE J 55:2370–2381CrossRefGoogle Scholar
  131. 131.
    Wang XZ, Medasani S, Marhoon F, Albazzaz H (2004) Multidimensional visualization of principal component scores for process historical data analysis. Ind Eng Chem Res 43:7036–7048CrossRefGoogle Scholar
  132. 132.
    Wang XZ, Yang Y, Li RF, Mcguinnes C, Adamson J, Megson IL, Donaldson K (2014) Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 8(5):465–476Google Scholar
  133. 133.
    Xia X-R, Monteiro-Riviere NA, Riviere JE (2010) An index for characterization of nanomaterials in biological systems. Nat Nanotechnol 5:671–675PubMedCrossRefGoogle Scholar
  134. 134.
    Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, Fadeel B, Riviere JE (2011) Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5:9074–9081PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275PubMedCrossRefGoogle Scholar
  136. 136.
    Xu R (2008) Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 6:112–115CrossRefGoogle Scholar
  137. 137.
    Yang Y, Guo Y, Hu C, Wang Y, Wang E (2004) Preparation of surface modifications of mesoporous titania with monosubstituted keggin units and their catalytic performance for organochlorine pesticide and dyes under UV irradiation. Appl Catal Gen 273:201–210CrossRefGoogle Scholar
  138. 138.
    Yee LC, Wei YC (2012) Current modeling methods used in QSAR/QSPR. Statistical modelling of molecular descriptors in QSAR/QSPR, pp 1–31Google Scholar
  139. 139.
    Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y-P (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Zhao C-M, Wang W-X (2012) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6:361–370PubMedCrossRefGoogle Scholar
  141. 141.
    Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, Zhang Q, Qu G, Chen Y, Liu G (2008) A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett 8:859–865PubMedCrossRefGoogle Scholar
  142. 142.
    Zurada JM, Malinowski A, Cloete I (1994) Sensitivity analysis for minimization of input data dimension for feedforward neural network. Circuits and systems. Iscas’94. IEEE international symposium on, pp 447–450Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ceyda Oksel
    • 1
  • Cai Y. Ma
    • 1
  • Jing J. Liu
    • 1
    • 2
  • Terry Wilkins
    • 1
  • Xue Z. Wang
    • 1
    • 2
    Email author
  1. 1.Institute of Particle Science and Engineering, School of Chemical and Process EngineeringUniversity of LeedsLeedsUK
  2. 2.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations