Advertisement

The Life Cycle of Engineered Nanoparticles

  • David González-Gálvez
  • Gemma Janer
  • Gemma Vilar
  • Alejandro Vílchez
  • Socorro Vázquez-CamposEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 947)

Abstract

The first years in the twenty-first century have meant the inclusion of nanotechnology in most industrial sectors, from very specific sensors to construction materials. The increasing use of nanomaterials in consumer products has raised concerns about their potential risks for workers, consumers and the environment. In a comprehensive risk assessment or life cycle assessment, a life cycle schema is the starting point necessary to build up the exposure scenarios and study the processes and mechanisms driving to safety concerns. This book chapter describes the processes that usually occur at all the stages of the life cycle of the nano-enabled product, from the nanomaterial synthesis to the end-of-life of the products. Furthermore, release studies reported in literature related to these processes are briefly discussed.

Keywords

Life Cycle Nanomaterials Nanocomposites Release Risk 

References

  1. 1.
    Luther W, Zweck A (2013) Safety aspects of engineered nanomaterials. doi:  10.4032/9789814364867
  2. 2.
    BEK (2014) BEK nr 644 af 13/06/2014. Bekendtgørelse om register over blandinger og varer, der indeholder nanomaterialer samt producenter og importørers indberetningspligt til registeret. BEK, DenmarkGoogle Scholar
  3. 3.
    JORF (2010) Article 185. Prévention des risques pour la santé et l’environnement résultant de l’exposition aux substances à l’état nanoparticulaire. JORF n°0160 du 13 juillet 2010 page 12905, FranceGoogle Scholar
  4. 4.
    Robichaud CO, Uyar AE, Darby MR et al (2009) Estimates of upper bounds and trends in nano-TiO 2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233. doi: 10.1021/es8032549 PubMedCrossRefGoogle Scholar
  5. 5.
    Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260. doi: 10.1021/es071818o PubMedCrossRefGoogle Scholar
  6. 6.
    Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. doi: 10.1021/es103300g PubMedCrossRefGoogle Scholar
  7. 7.
    Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109. doi: 10.1007/s11051-012-1109-9 CrossRefGoogle Scholar
  8. 8.
    Gao Y, Luo Z, He N, Wang M (2013) Metallic nanoparticle production and consumption in China between 2000 and 2010 and associative aquatic environmental risk assessment. J Nanopart Res 15:1681. doi: 10.1007/s11051-013-1681-7 CrossRefGoogle Scholar
  9. 9.
    ANSES (2015) R-nano.fr - Déclaration des substances à l’état nanoparticulaireGoogle Scholar
  10. 10.
    Sánchez Jiménez A, Brouwer D, van Tongeren M (2014) Workplace inhalation exposure to engineered nanomaterials. Detection, measurement, and assessment. In: Monteiro-Riviere NA, Tran CL (eds) Nanotoxicology prog. towar. nanomedicine, 2 edn. CRC Press, London, pp. 77–96CrossRefGoogle Scholar
  11. 11.
    Brouwer D, Duuren-Stuurman B, Berges M et al (2009) From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 11:1867–1881. doi: 10.1007/s11051-009-9772-1 CrossRefGoogle Scholar
  12. 12.
    Vogel U, Savolainen K, Wu Q, et al. (2014) Handbook of nanosafety. Handb nanosafety. doi:  10.1016/B978-0-12-416604-2.00002-0
  13. 13.
    Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269:120–127. doi: 10.1016/j.tox.2009.11.017 PubMedCrossRefGoogle Scholar
  14. 14.
    Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155. doi: 10.1039/c0em00547a PubMedCrossRefGoogle Scholar
  15. 15.
    Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59. doi: 10.1002/etc.726 PubMedCrossRefGoogle Scholar
  16. 16.
    Nowack B, David RM, Fissan H et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11. doi: 10.1016/j.envint.2013.04.003 PubMedCrossRefGoogle Scholar
  17. 17.
    Keller AA, Mcferran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–1703. doi: 10.1007/s11051-013-1692-4 CrossRefGoogle Scholar
  18. 18.
    Biswas A, Bayer IS, Biris AS et al (2012) Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 170:2–27. doi: 10.1016/j.cis.2011.11.001 PubMedCrossRefGoogle Scholar
  19. 19.
    Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res Gen Sci 2:660–677Google Scholar
  20. 20.
    Prasek J, Drbohlavova J, Chomoucka J et al (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872. doi: 10.1039/c1jm12254a CrossRefGoogle Scholar
  21. 21.
    Purohit R, Purohit K, Rana S et al (2014) Carbon nanotubes and their growth methods. Procedia Mater Sci 6:716–728. doi: 10.1016/j.mspro.2014.07.088 CrossRefGoogle Scholar
  22. 22.
    Rao C, Govindaraj A (2011) Nanotubes and nanowires, 2nd edn. doi: 10.1039/9781847552525 Google Scholar
  23. 23.
    Zhao X, Ohkohchi M, Wang M et al (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon N Y 35:775–781. doi: 10.1016/S0008-6223(97)00033-X CrossRefGoogle Scholar
  24. 24.
    Shimotani K, Anazawa K, Watanabe H, Shimizu M (2014) New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl Phys 73 A:451–454. doi: 10.1007/s003390100821 Google Scholar
  25. 25.
    Parkansky N, Boxman RL, Alterkop B et al (2004) Single-pulse arc production of carbon nanotubes in ambient air. J Phys D Appl Phys 37:2715–2719. doi: 10.1088/0022-3727/37/19/015 CrossRefGoogle Scholar
  26. 26.
    Tsai YY, Su JS, Su CY, He WH (2009) Production of carbon nanotubes by single-pulse discharge in air. J Mater Process Technol 209:4413–4416. doi: 10.1016/j.jmatprotec.2008.10.049 CrossRefGoogle Scholar
  27. 27.
    Saito Y, Nishikubo K, Kawabata K, Matsumoto T (1996) Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys 80:3062. doi: 10.1063/1.363166 CrossRefGoogle Scholar
  28. 28.
    Journet C, Maser WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758. doi: 10.1038/41972 CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Gu H, Iijima S (1998) Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl Phys Lett 73:3827. doi: 10.1063/1.122907 CrossRefGoogle Scholar
  30. 30.
    Muñoz E, Maser W, Benito A et al (2000) Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon N Y 38:1445–1451. doi: 10.1016/S0008-6223(99)00277-8 CrossRefGoogle Scholar
  31. 31.
    Arepalli S, Scott C (1999) Spectral measurements in production of single-wall carbon nanotubes by laser ablation. Chem Phys Lett 302:139–145. doi: 10.1016/S0009-2614(99)00098-6 CrossRefGoogle Scholar
  32. 32.
    Kokai F, Takahashi K (2000) Laser ablation of graphite-Co/Ni and growth of single-wall carbon nanotubes in vortexes formed in an Ar atmosphere. J Phys Chem B 104:6777–6784. doi: 10.1021/jp000359+ CrossRefGoogle Scholar
  33. 33.
    Yudasaka M, Kokai F, Takahashi K et al (1999) Formation of single-wall carbon nanotubes: comparison of CO2 laser ablation and Nd: YAG laser ablation. J Phys Chem B 103:3576–3581. doi: 10.1021/jp990072g CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 15:3087. doi: 10.1063/1.125239 CrossRefGoogle Scholar
  35. 35.
    Niu K, Sun J, Yang J, Du X (2012) The synthesis of carbon nanotubes by pulsed-laser ablation of a nickel/carbon composite target in ethanol or ambient air. Sci Adv Mater 4:463–466. doi: 10.1166/sam.2012.1302 CrossRefGoogle Scholar
  36. 36.
    Hu B, Wang K, Wu L, Yu S (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Sci 22:813–828. doi: 10.1002/adma.200902812 Google Scholar
  37. 37.
    Skrabalak S (2009) Ultrasound-assisted synthesis of carbon materials. Phys Chem Chem Phys 11:4930–4942. doi: 10.1039/B823408F PubMedCrossRefGoogle Scholar
  38. 38.
    Manafi S, Rahimipour M, Mobasherpour I, Soltanmoradi A (2012) The synthesis of peculiar structure of springlike multiwall carbon nanofibers/nanotubes via mechanothermal method. J Nanomater 803546:8. doi: 10.1155/2012/803546 Google Scholar
  39. 39.
    Sen LH, Nainar M, Begum S (2014) Model, synthesis and applications of graphene oxide–a review. Nanomater. Energy 3:61–65. doi: 10.1680/nme.13.00031 Google Scholar
  40. 40.
    Liu W, Chai S, Mohamed A, Hashim U (2014) Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem 20:1171–1185. doi: 10.1016/j.jiec.2013.08.028 CrossRefGoogle Scholar
  41. 41.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. doi: 10.1126/science.1158877 PubMedCrossRefGoogle Scholar
  42. 42.
    Choi W, Lahiri I (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. doi: 10.1080/10408430903505036 CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Petibone D, Xu Y et al (2014) Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. doi: 10.3109/03602532.2014.883406 Google Scholar
  44. 44.
    Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322. doi: 10.1002/cvde.201300051 CrossRefGoogle Scholar
  45. 45.
    Coleman J (2012) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22. doi: 10.1021/ar300009f PubMedCrossRefGoogle Scholar
  46. 46.
    Khan U, O’Neill A, Lotya M et al (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871. doi: 10.1002/smll.200902066 PubMedCrossRefGoogle Scholar
  47. 47.
    Hernandez Y, Nicolosi V, Lotya M (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. doi: 10.1038/nnano.2008.215 PubMedCrossRefGoogle Scholar
  48. 48.
    Kaniyoor A, Baby T, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469. doi: 10.1039/C0JM01876G CrossRefGoogle Scholar
  49. 49.
    Zhu Y, Stoller M, Cai W et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233. doi: 10.1021/nn901689k PubMedCrossRefGoogle Scholar
  50. 50.
    Stankovich S, Piner R, Nguyen S, Ruoff R (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon N Y 44:3342–3347. doi: 10.1016/j.carbon.2006.06.004 CrossRefGoogle Scholar
  51. 51.
    Cano-Márquez A (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533. doi: 10.1021/nl803585s PubMedCrossRefGoogle Scholar
  52. 52.
    Erlanger B, Chen B, Zhu M, Brus L (2001) Binding of an anti-fullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Lett 1:465–467. doi: 10.1021/nl015570r CrossRefGoogle Scholar
  53. 53.
    McDevitt M, Chattopadhyay D, Kappel B et al (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–1189. doi: 10.2967/jnumed.106.039131 PubMedCrossRefGoogle Scholar
  54. 54.
    Juárez B, Klinke C, Kornowski A, Weller H (2007) Quantum dot attachment and morphology control by carbon nanotubes. Nano Lett 7:3564–3568. doi: 10.1021/nl071225b CrossRefGoogle Scholar
  55. 55.
    Zanella R, Basiuk E, Santiago P et al (2005) Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J Phys Chem B 109:16290–16295. doi: 10.1021/jp0521454 PubMedCrossRefGoogle Scholar
  56. 56.
    Dahm M, Evans D (2012) Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann Occup Hyg 56:542–556. doi: 10.1093/annhyg/mer110 PubMedGoogle Scholar
  57. 57.
    Lee JH, Lee S-B, Bae GN et al (2010) Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol 22:369–381. doi: 10.3109/08958370903367359 PubMedCrossRefGoogle Scholar
  58. 58.
    Lam C, James J, McCluskey R et al (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217. doi: 10.1080/10408440600570233 PubMedCrossRefGoogle Scholar
  59. 59.
    Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713. doi: 10.1021/ar300028m PubMedCrossRefGoogle Scholar
  60. 60.
    Kolosnjaj-Tabi J, Szware H, Moussa F (2012) In vivo toxicity studies of pristine carbon nanotubes: a review. Deliv Nanoparticles. doi: 10.5772/34201 Google Scholar
  61. 61.
    Aschberger K, Johnston H (2010) Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 40:759–790. doi: 10.3109/10408444.2010.506638 PubMedCrossRefGoogle Scholar
  62. 62.
    Wang J, Xu Y, Yang Z et al (2013) Toxicity of carbon nanotubes. Curr Drug Metab 14:891–899PubMedCrossRefGoogle Scholar
  63. 63.
    Donaldson K, Aitken R, Tran L (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22. doi: 10.1093/toxsci/kfj130 PubMedCrossRefGoogle Scholar
  64. 64.
    Boczkowski J, Lanone S (2012) Respiratory toxicities of nanomaterials – a focus on carbon nanotubes. Adv Drug Deliv Rev 64:1694–1699. doi: 10.1016/j.addr.2012.05.011 PubMedCrossRefGoogle Scholar
  65. 65.
    Cena LG, Peters TM (2011) Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hyg 8:86–92. doi: 10.1080/15459624.2011.545943 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Han JH, Lee EJ, Lee JH et al (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–749. doi: 10.1080/08958370801942238 PubMedCrossRefGoogle Scholar
  67. 67.
    Fujitani Y, Kobayashi T, Arashidani K et al (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5:380–389. doi: 10.1080/15459620802050053 PubMedCrossRefGoogle Scholar
  68. 68.
    Masala O, Seshadri R (2004) Synthesis Routes for large volumes of nanoparticles. Annu Rev Mat Res 34:41–81. doi: 10.1146/annurev.matsci.34.052803.090949 CrossRefGoogle Scholar
  69. 69.
    Panacek A, Kvítek L, Prucek R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi: 10.1021/jp063826h PubMedCrossRefGoogle Scholar
  70. 70.
    Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15:1869–1895. doi: 10.1166/jnn.2015.9718 PubMedCrossRefGoogle Scholar
  71. 71.
    Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804. doi: 10.1021/cr9003902 PubMedCrossRefGoogle Scholar
  72. 72.
    Nemamcha A (2006) Synthesis of palladium nanoparticles by sonochemical reduction of palladium (II) nitrate in aqueous solution. J Phys Chem B 110:383–387. doi: 10.1021/jp0535801 PubMedCrossRefGoogle Scholar
  73. 73.
    Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391. doi: 10.1002/adma.200701301 CrossRefGoogle Scholar
  74. 74.
    Viau G, Brayner R, Poul L et al (2003) Ruthenium nanoparticles: size, shape, and self-assemblies. Chem Mater 15:486–494. doi: 10.1021/cm0212109 CrossRefGoogle Scholar
  75. 75.
    Mévellec V, Nowicki A, Roucoux A et al (2006) A simple and reproducible method for the synthesis of silica-supported rhodium nanoparticles and their investigation in the hydrogenation of aromatic compounds. New J Chem 30:1214–1219. doi: 10.1039/B605893K CrossRefGoogle Scholar
  76. 76.
    Stowell C, Korgel B (2005) Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. Nano Lett 5:1203–1207. doi: 10.1021/nl050648f PubMedCrossRefGoogle Scholar
  77. 77.
    Lista M, Liu D, Mulvaney P (2014) Phase transfer of noble metal nanoparticles to organic solvents. Langmuir 30:1932–1938. doi: 10.1021/la404569h PubMedCrossRefGoogle Scholar
  78. 78.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325. doi: 10.1002/smll.200701295 CrossRefGoogle Scholar
  79. 79.
    Philippot K, Chaudret B (2003) Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles. C R Chimie 6:1019–1034. doi: 10.1016/j.crci.2003.07.010 CrossRefGoogle Scholar
  80. 80.
    Chaudhuri RG, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433. doi: 10.1021/cr100449n CrossRefGoogle Scholar
  81. 81.
    Park J, Kwak BK, Bae E et al (2009) Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanopart Res 11:1705–1712. doi: 10.1007/s11051-009-9725-8 CrossRefGoogle Scholar
  82. 82.
    Zimmermann E, Derrough S, Locatelli D et al (2012) Results of potential exposure assessments during the maintenance and cleanout of deposition equipment. J Nanopart Res 14:1209. doi: 10.1007/s11051-012-1209-6 CrossRefGoogle Scholar
  83. 83.
    Debia M, Beaudry C, Weichenthal S et al (2013) Report R-777. Characterization and control of occupational exposure to nanoparticles and ultrafine particles. IRSST, MontréalGoogle Scholar
  84. 84.
    Ling M-P, Lin W-C, Liu C-C et al (2012) Risk management strategy to increase the safety of workers in the nanomaterials industry. J Hazard Mater 229–230:83–93. doi: 10.1016/j.jhazmat.2012.05.073 PubMedCrossRefGoogle Scholar
  85. 85.
    Lee JH, Ahn K, Kim SM et al (2012) Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J Nanopart Res 14:1134. doi: 10.1007/s11051-012-1134-8 CrossRefGoogle Scholar
  86. 86.
    Lee J, Kwon M, Ji J, Kang C (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–236. doi: 10.3109/08958378.2011.562567 PubMedCrossRefGoogle Scholar
  87. 87.
    Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials : review of modeling and analytical studies. Environ Pollut. doi: 10.1016/j.envpol.2013.06.003 Google Scholar
  88. 88.
    Fan Z, Lu J (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573. doi: 10.1166/jnn.2005.182 PubMedCrossRefGoogle Scholar
  89. 89.
    Chen X, Selloni A (2014) Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev 114:9281–9282. doi: 10.1021/cr500422r PubMedCrossRefGoogle Scholar
  90. 90.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244. doi: 10.1002/anie.200602866 PubMedCrossRefGoogle Scholar
  91. 91.
    Chen Y, Lv S, Chen C, Qiu C (2014) Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes. J Phys Chem C 118:4437–4443. doi: 10.1021/jp410625n CrossRefGoogle Scholar
  92. 92.
    Chen H, Mazzolini J, Ayers J, et al. (2013) Synthesis and characterization of nano ceria for biological applications. In: Kang SW, Park SH, Lee LP, et al (eds) Proc. SPIE 8879, Nano-bio sensing, imaging, spectrosc. Jeju, Republic of Korea p 887910. doi:  10.1117/12.2018564
  93. 93.
    Chen G, Guo C, Qiao H et al (2013) Well-dispersed sulfated zirconia nanoparticles as high-efficiency catalysts for the synthesis of bis(indolyl) methanes and biodiesel. Catal Commun 41:70–74. doi: 10.1016/j.catcom.2013.07.006 CrossRefGoogle Scholar
  94. 94.
    Yin M, Wu C, Lou Y et al (2005) Copper oxide nanocrystals. J Am Chem Soc 127:9506–9511. doi: 10.1021/ja050006u PubMedCrossRefGoogle Scholar
  95. 95.
    Cai W, Yu J, Anand C et al (2011) Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties. Chem Mater 23:1147–1157. doi: 10.1021/cm102512v CrossRefGoogle Scholar
  96. 96.
    Rahman I, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 132424:15. doi: 10.1155/2012/132424 Google Scholar
  97. 97.
    Wu S, Mou C, Lin H (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875. doi: 10.1039/C3CS35405A PubMedCrossRefGoogle Scholar
  98. 98.
    Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534. doi: 10.1002/adma.201104763 PubMedCrossRefGoogle Scholar
  99. 99.
    Yang J, Liu H, Martens W, Frost RL (2009) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114:111–119. doi: 10.1021/jp908548f CrossRefGoogle Scholar
  100. 100.
    Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261. doi: 10.1016/j.progpolymsci.2013.02.003 CrossRefGoogle Scholar
  101. 101.
    Curwin B, Bertke S (2011) Exposure characterization of metal oxide nanoparticles in the workplace. J Occup Environ Hyg 8:580–587. doi: 10.1080/15459624.2011.613348 PubMedCrossRefGoogle Scholar
  102. 102.
    Leppänen M, Lyyränen J, Järvelä M et al (2012) Exposure to CeO(2) nanoparticles during flame spray process. Nanotoxicology 6:643–651. doi: 10.3109/17435390.2011.600838 PubMedCrossRefGoogle Scholar
  103. 103.
    Yang Y, Mao P, Wang Z, Zhang J (2012) Distribution of nanoparticle number concentrations at a nano-TiO2 plant. Aerosol Air Qual Res 12:934–940. doi: 10.4209/aaqr.2012.02.0047 Google Scholar
  104. 104.
    Methner M, Hodson L, Dames A, Geraci C (2010) Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–Part B: Results from 12 field studies. J Occup Environ Hyg 7:163–176. doi: 10.1080/15459620903508066 PubMedCrossRefGoogle Scholar
  105. 105.
    Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials (Basel) 3:2260–2345. doi: 10.3390/ma3042260 CrossRefGoogle Scholar
  106. 106.
    Valizadeh A, Mikaeili H, Samiei M et al (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480. doi: 10.1186/1556-276X-7-480 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Evans C, Cass L, Knowles K (2012) Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands. J Coord Chem 65:2391–2414. doi: 10.1080/00958972.2012.695019 CrossRefGoogle Scholar
  108. 108.
    Deng Z, Samanta A (2012) Robust DNA-functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly. J Am Chem Soc 134:17424–17427. doi: 10.1021/ja3081023 PubMedCrossRefGoogle Scholar
  109. 109.
    Goswami N, Giri A, Kar S, Bootharaju M (2012) Protein-directed synthesis of NIR-emitting, tunable HgS quantum dots and their applications in metal-ion sensing. Small 8:3175–3184. doi: 10.1002/smll.201200760 PubMedCrossRefGoogle Scholar
  110. 110.
    Wang D, Qian J, Cai F et al (2012) “Green”-synthesized near-infrared PbS quantum dots with silica–PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging. Nanotechnology 23:245701. doi: 10.1088/0957-4484/23/24/245701 PubMedCrossRefGoogle Scholar
  111. 111.
    Lee J, Kwon B, Park H et al (2013) Solar cells: exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials. Adv Mater 25:2104. doi: 10.1002/adma.201370088 CrossRefGoogle Scholar
  112. 112.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172. doi: 10.1289/ehp.8284 PubMedCrossRefGoogle Scholar
  113. 113.
    Chen N, He Y, Su Y et al (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–1244. doi: 10.1016/j.biomaterials.2011.10.070 PubMedCrossRefGoogle Scholar
  114. 114.
    Tsoi K, Dai Q (2012) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671. doi: 10.1021/ar300040z PubMedCrossRefGoogle Scholar
  115. 115.
    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7 CrossRefGoogle Scholar
  116. 116.
    Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1:2–23. doi: 10.1007/s40145-012-0002-4 CrossRefGoogle Scholar
  117. 117.
    Panda PK, Sahoo B (2013) Synthesis and applications of electrospun nanofibers-a review. In: Navani KN, Sinha S, Govil JN (eds) Nanotechnology, vol. 1: Fundamental applications. Studiun Press LLC, Houston, TX, USA, pp 399–416Google Scholar
  118. 118.
    Lee YS, Im JS (2010) Preparation of functionalized nanofibers and their applications. In: Kumar A (ed) Nanofibers. InTech, Rijeka, Croatia, p 121–140Google Scholar
  119. 119.
    Dai Y, Liu W, Formo E (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22:326–338. doi: 10.1002/pat.1839 CrossRefGoogle Scholar
  120. 120.
    Methner M, Crawford C, Geraci C (2012) Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material. J Occup Environ Hyg 9:308–318. doi: 10.1080/15459624.2012.670790 PubMedCrossRefGoogle Scholar
  121. 121.
    Daoud WA (2013) Self-cleaning materials and surfaces: a nanotechnology approach. Wiley, New YorkCrossRefGoogle Scholar
  122. 122.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi: 10.1016/j.biotechadv.2008.09.002 PubMedCrossRefGoogle Scholar
  123. 123.
    Thelakkat M, Schmitz C, Schmidt H (2002) Fully vapor-deposited thin-layer titanium dioxide solar cells. Adv Mater 14:577–581. doi:10.1002/1521-4095(20020418)14:8<577::AID-ADMA577>3.0.CO;2-SCrossRefGoogle Scholar
  124. 124.
    Davim JP, Charitidis CA (2013) Nanocomposites: materials, manufacturing and engineering. De Gruyter, BerlinCrossRefGoogle Scholar
  125. 125.
    Kumar CSSR (2010) Nanocomposites. John Wiley & Sons, Inc., Hoboken, NJ, USA. doi:  10.1002/9781119096122
  126. 126.
    Twardowski TE (2007) Introduction to nanocomposite materials: properties, processing, characterization, 1st edn. DEStech Publications Inc, LancasterGoogle Scholar
  127. 127.
    Anandhan S, Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. In: Cuppoletti J (ed) Nanocomposites polym. with anal. methods. InTech, Rijeka, Croatia, p 3–28Google Scholar
  128. 128.
    Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites : synthesis, structure, properties and new application opportunities. Mater Res 12:1–39. doi: 10.1590/S1516-14392009000100002
  129. 129.
    Hussain F (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575. doi: 10.1177/0021998306067321 CrossRefGoogle Scholar
  130. 130.
    Mittal V (2010) Polymer nanocomposites: synthesis, microstructure, and properties. In: Mittal V (ed) Optim. polym. nanocomposite prop. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p 1–20. ISBN:978-3-527-32521-4Google Scholar
  131. 131.
    Golanski L, Guiot A, Pras M et al (2012) Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J Nanopart Res 14:962. doi: 10.1007/s11051-012-0962-x CrossRefGoogle Scholar
  132. 132.
    Phua Y, Lau N, Sudesh K et al (2014) A study on the effects of organoclay content and compatibilizer addition on the properties of biodegradable poly (butylene succinate) nanocomposites under natural weathering. J Compos Mater. doi: 10.1177/0021998314527328 Google Scholar
  133. 133.
    Mistretta M, Fontana P, Ceraulo M et al (2015) Effect of compatibilization on the photooxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites. Polym Degrad Stab 112:192–197. doi: 10.1016/j.polymdegradstab.2015.01.002 CrossRefGoogle Scholar
  134. 134.
    García-López D, Picazo O, Merino JC, Pastor JM (2003) Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur Polym J 39:945–950. doi: 10.1016/S0014-3057(02)00333-6 CrossRefGoogle Scholar
  135. 135.
    Taguet A, Cassagnau P, Lopez-Cuesta J (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563. doi: 10.1016/j.progpolymsci.2014.04.002 CrossRefGoogle Scholar
  136. 136.
    Sengupta R, Bhattacharya M (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670. doi: 10.1016/j.progpolymsci.2010.11.003 CrossRefGoogle Scholar
  137. 137.
    Li D, You Y, Li R, Deng X (2013) Effects of nanometer-TiO2 surface modification and concentration on the mechanical performances of polypropylene/polyamide maleic anhydride-grafted. J Reinf Plast Compos 32:1807–1820. doi: 10.1177/0731684413493341 CrossRefGoogle Scholar
  138. 138.
    Beyou E, Akbar S, Chaumont P, Cassagnau P (2013) Polymer nanocomposites containing functionalised multiwalled carbon nanoTubes: a particular attention to polyolefin based materials. Synth Appl Carbon Nanotub Their Compos. doi: 10.5772/50710 Google Scholar
  139. 139.
    Low I (2014) Advances in ceramic matrix composites. Woodhead Publishing Limited, Cambridge, UKGoogle Scholar
  140. 140.
    Chawla K (1998) Ceramic matrix composites, 2nd edn. SpringerGoogle Scholar
  141. 141.
    Yeomans J (2008) Ductile particle ceramic matrix composites—Scientific curiosities or engineering materials? J Eur Ceram Soc 28:1543–1550. doi: 10.1016/j.jeurceramsoc.2007.12.009 CrossRefGoogle Scholar
  142. 142.
    Rosso M (2006) Ceramic and metal matrix composites: Routes and properties. J Mater Process Technol 175:364–375. doi: 10.1016/j.jmatprotec.2005.04.038 CrossRefGoogle Scholar
  143. 143.
    Samal S, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites-A review. J Miner Mater Charact Eng 7:355–370Google Scholar
  144. 144.
    Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683. doi: 10.1016/S0272-8842(00)00004-3 CrossRefGoogle Scholar
  145. 145.
    Zhao Z, Sun R, Xin G (2013) A review: application of nanomaterials in concrete. Appl Mech Mater 405–408:2881–2884. doi: 10.4028/www.scientific.net/AMM.405-408.2881 CrossRefGoogle Scholar
  146. 146.
    Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288. doi: 10.1179/174328007X160281 CrossRefGoogle Scholar
  147. 147.
    Hedayati M, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials (Basel) 7:1221–1248. doi: 10.3390/ma7021221 CrossRefGoogle Scholar
  148. 148.
    Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26:1137–1156. doi: 10.1007/BF00544448 CrossRefGoogle Scholar
  149. 149.
    Rohatgi P, Schultz B (2007) Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Mater Matters 2:16–19Google Scholar
  150. 150.
    He F, Han Q, Jackson M (2008) Nanoparticulate reinforced metal matrix nanocomposites–a review. Int J Nanoparticles 1:301–309. doi: 10.1504/IJNP.2008.026473 CrossRefGoogle Scholar
  151. 151.
    Haydon B (2013) Nanomaterials and their applications in textiles, standards: domestic standardization for Canadian Manufacturers and Importers and International Standardization Developments. Waterloo, Ontario, Canada. ISBN:978-1-100-21089-6Google Scholar
  152. 152.
    Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18. doi: 10.1016/j.colsurfb.2010.03.029 PubMedCrossRefGoogle Scholar
  153. 153.
    Zille A, Almeida L, Amorim T et al (2014) Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater Res Express 1:032003. doi: 10.1088/2053-1591/1/3/032003 CrossRefGoogle Scholar
  154. 154.
    Coyle S, Diamond D (2010) Smart nanotextiles: materials and their application. In: Encycl. Mater. Elsevier Ltd., Atlanta, GA, USA, p 8. doi:  10.1016/B978-008043152-9.02220-X
  155. 155.
    Coyle S, Wu Y, Lau K, Rossi DD (2007) Smart nanotextiles: a review of materials and applications. MRS Bull 32:434–442. doi: 10.1557/mrs2007.67 CrossRefGoogle Scholar
  156. 156.
    Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142. doi: 10.1016/j.envint.2011.02.013 PubMedCrossRefGoogle Scholar
  157. 157.
    Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118. doi: 10.1021/es9018332 PubMedCrossRefGoogle Scholar
  158. 158.
    Farkas J, Peter H, Christian P et al (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062. doi: 10.1016/j.envint.2011.03.006 PubMedCrossRefGoogle Scholar
  159. 159.
    Windler L, Lorenz C, von Goetz N et al (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46:8181–8188. doi: 10.1021/es301633b PubMedCrossRefGoogle Scholar
  160. 160.
    Lorenz C, Windler L, von Goetz N et al (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89:817–824. doi: 10.1016/j.chemosphere.2012.04.063 PubMedCrossRefGoogle Scholar
  161. 161.
    El-Rafie MH, Ahmed HB, Zahran MK (2014) Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. Carbohydr Polym 107:174–181. doi: 10.1016/j.carbpol.2014.02.024 PubMedCrossRefGoogle Scholar
  162. 162.
    Chronakis I (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167:283–293. doi: 10.1016/j.jmatprotec.2005.06.053 CrossRefGoogle Scholar
  163. 163.
    Leong S, Razmjou A, Wang K (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184. doi: 10.1016/j.memsci.2014.08.016 CrossRefGoogle Scholar
  164. 164.
    Nowack B, Brouwer C, Geertsma RE et al (2013) Analysis of the occupational , consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 7:1152–1156. doi: 10.3109/17435390.2012.711863 PubMedCrossRefGoogle Scholar
  165. 165.
    Wohlleben W, Kuhlbusch TAJ, Schnekenburger J, Lehr C-M (2014) Safety of nanomaterials along their lifecycle: release, exposure, and human hazards. CRC Press, LondonCrossRefGoogle Scholar
  166. 166.
    Vance ME, Marr LC (2014) Exposure to airborne engineered nanoparticles in the indoor environment. Atmos Environ. doi: 10.1016/j.atmosenv.2014.12.056 Google Scholar
  167. 167.
    Kuhlbusch TA, Asbach C, Fissan H et al (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8:22. doi: 10.1186/1743-8977-8-22 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Pietroiusti A, Magrini A (2014) Engineered nanoparticles at the workplace: current knowledge about workers’ risk. Occup Med (Lond) 64:319–330. doi: 10.1093/occmed/kqu051 CrossRefGoogle Scholar
  169. 169.
    Gomez V, Irusta S, Balas F et al (2014) Unintended emission of nanoparticle aerosols during common laboratory handling operations. J Hazard Mater 279:75–84. doi: 10.1016/j.jhazmat.2014.06.064 PubMedCrossRefGoogle Scholar
  170. 170.
    Heitbrink WA, Lo L-M, Dunn KH (2015) Exposure controls for nanomaterials at three manufacturing sites. J Occup Environ Hyg 12:16–28. doi: 10.1080/15459624.2014.930559 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Kim B, Lee J, Choi B, Park S (2013) Ultrafine particle characteristics in a rubber manufacturing factory. Ann Occup Hyg 57:728–739. doi: 10.1093/annhyg/mes102 PubMedGoogle Scholar
  172. 172.
    Kim B, Kim H, Yu IJ (2014) Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner. Ind Health 52:152–162. doi: 10.2486/indhealth.2013-0087 PubMedCrossRefGoogle Scholar
  173. 173.
    Göhler D, Stintz M (2014) Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings. J Nanopart Res 16:2520. doi: 10.1007/s11051-014-2520-1 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Brouwer DH, Duuren-Stuurman B, Berges M et al (2013) Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. J Nanopart Res 15:2090. doi: 10.1007/s11051-013-2090-7 CrossRefGoogle Scholar
  175. 175.
    Voliotis A, Bezantakos S, Giamarelou M et al (2014) Nanoparticle emissions from traditional pottery manufacturing. Environ Sci Process Impacts 16:1489–1494. doi: 10.1039/c3em00709j PubMedCrossRefGoogle Scholar
  176. 176.
    Froggett SJ, Clancy SF, Boverhof DR, Canady RA (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17. doi: 10.1186/1743-8977-11-17 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Duncan TV (2015) Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation. ACS Appl Mater Interfaces 7:20–39. doi: 10.1021/am5062757 PubMedCrossRefGoogle Scholar
  178. 178.
    Hsu L-Y, Chein H-M (2006) Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. J Nanopart Res 9:157–163. doi: 10.1007/s11051-006-9185-3 CrossRefGoogle Scholar
  179. 179.
    Bello D, Wardle BL, Yamamoto N et al (2008) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11:231–249. doi: 10.1007/s11051-008-9499-4 CrossRefGoogle Scholar
  180. 180.
    Ogura I, Kotake M, Shigeta M et al (2013) Potential release of carbon nanotubes from their composites during grinding. J Phys Conf Ser 429:12049. doi: 10.1088/1742-6596/429/1/012049 CrossRefGoogle Scholar
  181. 181.
    Raynor PC, Cebula JI, Spangenberger JS et al (2012) Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments. J Occup Environ Hyg 9:1–13. doi: 10.1080/15459624.2012.633061 PubMedCrossRefGoogle Scholar
  182. 182.
    Koponen IK, Jensen KA, Schneider T (2009) Sanding dust from nanoparticle-containing paints: physical characterisation. J Phys Conf Ser 151:012048. doi: 10.1088/1742-6596/151/1/012048 CrossRefGoogle Scholar
  183. 183.
    Koponen IK, Jensen KA, Schneider T (2010) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J Expo Sci Environ Epidemiol 21:408–418. doi: 10.1038/jes.2010.32 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Göhler D, Stintz M, Hillemann L, Vorbau M (2010) Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann Occup Hyg 54:615–624. doi: 10.1093/annhyg/meq053 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Wohlleben W, Brill S, Meier MW et al (2011) On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7:2384–2395. doi: 10.1002/smll.201002054 PubMedCrossRefGoogle Scholar
  186. 186.
    Huang G, Park JH, Cena LG et al (2012) Evaluation of airborne particle emissions from commercial products containing carbon nanotubes. J Nanopart Res. doi: 10.1007/s11051-012-1231-8 PubMedPubMedCentralGoogle Scholar
  187. 187.
    Irfan A, Sachse S, Njuguna J et al (2013) Assessment of nanoparticle release from polyamide 6- and polypropylene-silicon composites and cytotoxicity in human lung A549 cells. J Inorg Organomet Polym Mater 23:861–870. doi: 10.1007/s10904-013-9856-3 CrossRefGoogle Scholar
  188. 188.
    Sachse S, Silva F, Zhu H et al (2012) The effect of nanoclay on dust generation during drilling of PA6 nanocomposites. J Nanomater 2012:1–8. doi: 10.1155/2012/189386 CrossRefGoogle Scholar
  189. 189.
    Sachse S, Silva F, Irfan A et al (2012) Physical characteristics of nanoparticles emitted during drilling of silica based polyamide 6 nanocomposites. IOP Conf Ser Mater Sci Eng 40:12012. doi: 10.1088/1757-899X/40/1/012012 CrossRefGoogle Scholar
  190. 190.
    Bello D, Wardle BL, Zhang J et al (2010) Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int J Occup Environ Health 16:434–450. doi: 10.1179/107735210799159996 PubMedCrossRefGoogle Scholar
  191. 191.
    Wohlleben W, Meier MW, Vogel S et al (2013) Elastic CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale 5:369–380. doi: 10.1039/c2nr32711b PubMedCrossRefGoogle Scholar
  192. 192.
    Schlagenhauf L, Chu BTT, Buha J et al (2012) Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ Sci Technol 46:7366–7372. doi: 10.1021/es300320y PubMedCrossRefGoogle Scholar
  193. 193.
    Guiot A, Golanski L, Tardif F (2009) Measurement of nanoparticle removal by abrasion. J Phys Conf Ser 170:12014. doi: 10.1088/1742-6596/170/1/012014 CrossRefGoogle Scholar
  194. 194.
    Vorbau M, Hillemann L, Stintz M (2009) Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings. J Aerosol Sci 40:209–217. doi: 10.1016/j.jaerosci.2008.10.006 CrossRefGoogle Scholar
  195. 195.
    Zuin S, Gaiani M, Ferrari A, Golanski L (2013) Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J Nanopart Res 16:2185. doi: 10.1007/s11051-013-2185-1 CrossRefGoogle Scholar
  196. 196.
    Zhou L, Zhang Z, Xia S et al (2014) Effects of suspended titanium dioxide nanoparticles on cake layer formation in submerged membrane bioreactor. Bioresour Technol 152:101–106. doi: 10.1016/j.biortech.2013.11.006 PubMedCrossRefGoogle Scholar
  197. 197.
    Golanski L, Guiot A, Braganza D, Tardif F (2010) New method for the characterization of abrasion-induced nanoparticle release into air from nanomaterials. In: NSTI-Nanotech 2010. Anaheim, CA, USA, p 720–723Google Scholar
  198. 198.
    Biswal M, Mohanty S, Nayak SK, Kumar PS (2013) Effect of functionalized nanosilica on the mechanical, dynamic-mechanical, and morphological performance of polycarbonate/nanosilica nanocomposites. Polym Eng Sci 53:1287–1296. doi: 10.1002/pen.23388 CrossRefGoogle Scholar
  199. 199.
    Grieger KD, Laurent A, Miseljic M et al (2012) Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals? J Nanopart Res 14:958. doi: 10.1007/s11051-012-0958-6 CrossRefGoogle Scholar
  200. 200.
    Project on Emerging Nanotechnologies (2014) Consumer Products InventoryGoogle Scholar
  201. 201.
    EP (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. EuropeGoogle Scholar
  202. 202.
    EP (2011) Regulation (EU) No 1169/2011 of the European Parliament and the Council of 25 October 2011 on the provision of food information to consumers. EuropeGoogle Scholar
  203. 203.
    Ministère de l’Écologie du Développement durable et de l’Énergie (2014) Éléments issus des déclarations des substances à l’état nanoparticulaire – exercice 2014. Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail, Maisons-Alfort, FranceGoogle Scholar
  204. 204.
    Göhler D, Nogowski A, Fiala P, Stintz M (2013) Nanoparticle release from nanocomposites due to mechanical treatment at two stages of the life-cycle. J Phys Conf Ser 429:12045. doi: 10.1088/1742-6596/429/1/012045 CrossRefGoogle Scholar
  205. 205.
    Hirth S, Cena L, Cox G et al (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanopart Res 15:1504. doi: 10.1007/s11051-013-1504-x PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Kaegi R, Sinnet B, Zuleeg S et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905. doi: 10.1016/j.envpol.2010.06.009 PubMedCrossRefGoogle Scholar
  207. 207.
    Al-Kattan A, Wichser A, Vonbank R et al (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2186–2193. doi: 10.1039/c3em00331k PubMedCrossRefGoogle Scholar
  208. 208.
    Kaegi R, Ulrich A, Sinnet B et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239. doi: 10.1016/j.envpol.2008.08.004 PubMedCrossRefGoogle Scholar
  209. 209.
    Al-Kattan A, Wichser A, Zuin S et al (2014) Behavior of TiO(2) released from Nano-TiO(2)-containing paint and comparison to pristine Nano-TiO(2). Environ Sci Technol 48:6710–6718. doi: 10.1021/es5006219 PubMedCrossRefGoogle Scholar
  210. 210.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139PubMedCrossRefGoogle Scholar
  211. 211.
    Benn T, Cavanagh B, Hristovski K et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875. doi: 10.2134/jeq2009.0363 PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Mitrano DM, Rimmele E, Wichser A et al (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219. doi: 10.1021/nn502228w PubMedCrossRefGoogle Scholar
  213. 213.
    Kulthong K, Srisung S, Boonpavanitchakul K et al (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8. doi: 10.1186/1743-8977-7-8 PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    von Goetz N, Lorenz C, Windler L et al (2013) Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987. doi: 10.1021/es304329w CrossRefGoogle Scholar
  215. 215.
    Yan Y, Yang H, Li J et al (2012) Release behavior of nano-silver textiles in simulated perspiration fluids. Text Res J 82:1422–1429. doi: 10.1177/0040517512439922 CrossRefGoogle Scholar
  216. 216.
    Sánchez C, Hortal M, Aliaga C et al (2014) Recyclability assessment of nano-reinforced plastic packaging. Waste Manag 34:2647–2655. doi: 10.1016/j.wasman.2014.08.006 PubMedCrossRefGoogle Scholar
  217. 217.
    Touati N, Kaci M, Bruzaud S, Grohens Y (2011) The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15 A nanocomposites. Polym Degrad Stab 96:1064–1073. doi: 10.1016/j.polymdegradstab.2011.03.015 CrossRefGoogle Scholar
  218. 218.
    Struwe J, Schindler E, Pfirrmann O (2012) Relevance of nanomaterials in waste recycling. Hans-Böckler Foundation, Düsseldorf, Germany, AP270Google Scholar
  219. 219.
    Caballero-Guzman A, Sun T, Nowack B (2015) Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag 36:33–43. doi: 10.1016/j.wasman.2014.11.006 PubMedCrossRefGoogle Scholar
  220. 220.
    Holder AL, Vejerano EP, Zhou X, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci Process Impacts 15:1652–1664. doi: 10.1039/c3em00224a PubMedCrossRefGoogle Scholar
  221. 221.
    Mueller NC, Buha J, Wang J et al (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 15:251. doi: 10.1039/c2em30761h PubMedCrossRefGoogle Scholar
  222. 222.
    Roes L, Patel MK, Worrell E, Ludwig C (2012) Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. Sci Total Environ 417–418:76–86. doi: 10.1016/j.scitotenv.2011.12.030 PubMedCrossRefGoogle Scholar
  223. 223.
    Walser T, Limbach LK, Brogioli R et al (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 7:520–524. doi: 10.1038/nnano.2012.64 PubMedCrossRefGoogle Scholar
  224. 224.
    Vejerano EP, Leon EC, Holder AL, Marr LC (2014) Characterization of particle emissions and fate of nanomaterials during incineration. Environ Sci Nano. doi: 10.1039/c3en00080j Google Scholar
  225. 225.
    Massari A, Beggio M, Hreglich S et al (2014) Behavior of TiO2 nanoparticles during incineration of solid paint waste: a lab-scale test. Waste Manag 34:1897–1907. doi: 10.1016/j.wasman.2014.05.015 PubMedCrossRefGoogle Scholar
  226. 226.
    Lozano P, Berge ND (2012) Single-walled carbon nanotube behavior in representative mature leachate. Waste Manag 32:1699–1711. doi: 10.1016/j.wasman.2012.03.019 PubMedCrossRefGoogle Scholar
  227. 227.
    Khan IA, Berge ND, Sabo-attwood T et al (2013) Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions. Env Sci Technol 47:8425–8433. doi: 10.1021/es401748f Google Scholar
  228. 228.
    Bolyard SC, Reinhart DR, Santra S, States U (2013) Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 47:8114–8122. doi: 10.1021/es305175e PubMedGoogle Scholar
  229. 229.
    Gitipour A, El Badawy A, Arambewela M et al (2013) The impact of silver nanoparticles on the composting of municipal solid waste. Environ Sci Technol 47:14385–14393. doi: 10.1021/es402510a PubMedCrossRefGoogle Scholar
  230. 230.
    Neale PA, Jämting ÅK, Escher BI, Herrmann J (2013) A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants. Water Sci Technol 68:1440–1453. doi: 10.2166/wst.2013.388 PubMedCrossRefGoogle Scholar
  231. 231.
    Yang Y, Wang Y, Westerhoff P et al (2014) Metal and nanoparticle occurrence in biosolid-amended soils. Sci Total Environ 485-486:441–449. doi: 10.1016/j.scitotenv.2014.03.122 PubMedCrossRefGoogle Scholar
  232. 232.
    Ganzleben C, Pelsy F, Hansen SF, et al (2011) Review of environmental legislation for the regulatory control of nanomaterials. Directorate-General for Environment-European Commision, Brussels, Belgium, p. 210Google Scholar
  233. 233.
    Beaudrie CEH, Kandlikar M, Satterfield T (2013) From cradle-to-grave at the nanoscale: gaps in U.S. regulatory oversight along the nanomaterial life cycle. Environ Sci Technol 47:5524–5534. doi: 10.1021/es303591x PubMedCrossRefGoogle Scholar
  234. 234.
    EP (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing. EuropeGoogle Scholar
  235. 235.
    EP (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. 3–30Google Scholar
  236. 236.
    Breggin LK, Pendergrass J (2007) Does the nano go? End-of-life regulation of nanotechnologies. Project on Emerging Nanotechnologies at the Woodrow Wilson International Center for Scholars, Washington, DCGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David González-Gálvez
    • 1
  • Gemma Janer
    • 1
  • Gemma Vilar
    • 1
  • Alejandro Vílchez
    • 1
  • Socorro Vázquez-Campos
    • 1
    Email author
  1. 1.LEITAT Technological CenterTerrassa (Barcelona)Spain

Personalised recommendations