Advertisement

Assessment of Human Exposure to ENMs

  • Araceli Sánchez Jiménez
  • Martie van TongerenEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 947)

Abstract

Human exposure assessment of engineered nanomaterials (ENMs) is hampered, among other factors, by the difficulty to differentiate ENM from other nanomaterials (incidental to processes or naturally occurring) and the lack of a single metric that can be used for health risk assessment. It is important that the exposure assessment is carried out throughout the entire life-cycle as releases can occur at the different stages of the product life-cycle, from the synthesis, manufacture of the nano-enable product (occupational exposure) to the professional and consumer use of nano-enabled product (consumer exposure) and at the end of life.

Occupational exposure surveys should follow a tiered approach, increasing in complexity in terms of instruments used and sampling strategy applied with higher tiers in order tailor the exposure assessment to the specific materials used and workplace exposure scenarios and to reduce uncertainty in assessment of exposure. Assessment of consumer exposure and of releases from end-of-life processes currently relies on release testing of nano-enabled products in laboratory settings.

Keywords

Engineered nanomaterials Occupational exposure Consumer exposure Tiered approach 

References

  1. 1.
    Aitken RA, Bassan A, Friedrichs S, Hankin SM, Hansen SF, Holmqvist J, Peters SAK, Poland CA, Tran CL (2011) Specific advice on exposure assessment and hazard/risk characterisation for nanomaterials under REACHGoogle Scholar
  2. 2.
    Asbach C, Kaminski H, Von Barany D, Kuhlbusch TAJ, Monz C, Dziurowitz N, Pelzer J, Berlin K, Dietrich S, Götz U, Kiesling HJ, Schierl R, Dahmann D (2012) Comparability of portable nanoparticle exposure monitors. Ann Occup Hyg 56:606–621PubMedGoogle Scholar
  3. 3.
    Asbach C, Kuhlbusch, TAJ, Kaminski H, Stahlmecke B, Plitzko S, Götz U, Voetz M, Kiesling HJ, Dahmann D ( 2012) NanoGEM standard operation procedures for assessing exposure to nanomaterials, following a tiered approachGoogle Scholar
  4. 4.
    Asbach C, Neumann V, Monz C, Dahmann D, van Tongeren M, Alexander C, MacCalman L, Todea AM (2017) On the effect of wearing personal nanoparticle monitors on the comparability of personal exposure measurements. Environ. Sci.: Nano, Advance Article, DOI: 10.1039/c6en00362aGoogle Scholar
  5. 5.
    BAuA, BG RCI, IFA, IUTA, TUD, VCI (2011) Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operationsGoogle Scholar
  6. 6.
    Bekker C, Kuijpers E, Brouwer DH, Vermeulen R, Fransman W (2015) Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; A broad-scale exposure study. Ann Occup Hyg 59:681–704CrossRefPubMedGoogle Scholar
  7. 7.
    Boldrin A, Hansen SF, Baun A, Hartmann NIB, Astrup TF (2014) Environmental exposure assessment framework for nanoparticles in solid waste. J Nanopart Res 16:2394CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brouwer D, van Duuren-Stuurman B, Berges M, Jankowska E, Delphine B, Mark D (2009) From workplace air measurement results toward estimates of exposure? Development of strategy to assess exposure to manufactured nano-objects. J Nanopart Res 11:1867–1881CrossRefGoogle Scholar
  9. 9.
    Brouwer D, Berges M, Virji MA, Fransman W, Bello D, Hodson L, Gabriel S, Tielemans E (2012) Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann Occup Hyg 56:1–9PubMedGoogle Scholar
  10. 10.
    Brouwer DH (2013) Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. J Nanopart Res 15:2090CrossRefGoogle Scholar
  11. 11.
    Brouwer D, Boessen R, van Duuren-Stuurman B, Bard D, Moehlmann C, Bekker C, Fransman W, Entink RK (2016) Evaluation of Decision Rules in a Tiered Assessment of Inhalation Exposure to Nanomaterials. Ann Occup Hyg 60(8):949–959Google Scholar
  12. 12.
    BSI (2010) Nanotechnologies—part 3: guide to assessing airborne exposure in occupational settings relevant to nanomaterials. British Standards Institution, London (BSI PD 6699-3:2010)Google Scholar
  13. 13.
    European Committee for Standardisation (CEN) (1993) Workplace atmospheres – size fraction definitions for measurement of airborne particles. Standard EN 481, BrusselsGoogle Scholar
  14. 14.
    Chen BT, Afshari A, Stone S, Jackson M, Schwegler-Berry D, Frazer DG, Castranova V, Thomas AT (2010) Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design. Inhal Toxicol 22:1072–1082CrossRefPubMedGoogle Scholar
  15. 15.
    Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA (2013) Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. Ann Occup Hyg 57:328–344PubMedGoogle Scholar
  16. 16.
    Donalson K, Li XY, Macnee W (1998) Ultrafine (nanometer) particle mediated lung injury. Aerosol Science 29:553–560CrossRefGoogle Scholar
  17. 17.
    Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Future Markets (2012) The global market for nanomaterials 2002–2006; production volumes, revenues and end use marketsGoogle Scholar
  19. 19.
    Guichard R, Tanière A, Belut E, Nimbert N (2014) Simulation of nanoparticle coagulation under Brownian motion and turbulence in a differential–algebraic framework: developments and applications. Int J Multiphase Flow 64:73–84Google Scholar
  20. 20.
    Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17:438–447CrossRefPubMedGoogle Scholar
  21. 21.
    Hansen SF (2010) Regulation and risk assessment of nanomaterials – Too little, too late? PhD Thesis. Technical University of DenmarkGoogle Scholar
  22. 22.
    Hornsbya KE, Pryor SC (2014) A laboratory comparison of real-time measurement methods for 10–100-nm particle size distributions. Aerosol Sci Tech 58:571–582Google Scholar
  23. 23.
    IARC (2015) Carbon nanotubes (CNT), fluoro-edenite and silicon carbide, vol 111. WHO, International Agency for Research on CancerGoogle Scholar
  24. 24.
    IFA (2009) Criteria for the assessment of the effectiveness of protective measures. Available at: http://www.dguv.de/ifa/Fachinfos/Nanopartikel-am-Arbeitsplatz/Beurteilung-von-Schutzma%C3%9Fnahmen/index-2.jsp. Last accessed: 25 Aug 2016
  25. 25.
    ISO/TR 27628: 2007 Workplace atmospheres – Ultrafine, nanoparticle and nano-structured aerosols – Inhalation exposure characterization and assessment. http://www.dguv.de/ifa/Fachinfos/Nanopartikel-am-Arbeitsplatz/Beurteilung-von-Schutzma%C3%9Fnahmen/index-2.jsp
  26. 26.
    ISO 28439: 2011 Workplace atmospheres – characterization of ultrafine aerosols/nanoaerosols – determination of the size distribution and number concentration using differential electrical mobility analysing systemsGoogle Scholar
  27. 27.
    ISO/TR 1225: 2012 Nanomaterials-quantification of nano-object release from powders by generation of aerosolsGoogle Scholar
  28. 28.
    Jespersen TS, Nygård J (2007) Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy. Appl Phys Lett 90:183108CrossRefGoogle Scholar
  29. 29.
    Kaminski H, Kuhlbusch TAJ, Rath S, Götz U, Sprenger M, Wels D, Polloczek J, Bachmann V, Dziurowitz N, Kiesling HJ, Schwiegelshohn A, Monz C, Dahmann D, Asbach C (2013) Comparability of mobility particle sizers and diffusion chargers. J Aerosol Sci 57:156–178CrossRefGoogle Scholar
  30. 30.
    Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  31. 31.
    Klein Entik RH, Bekker C, Fransman W, Brouwer D (2015) Analysis of time series of particle size distributions in nano exposure assessment. J Aerosol Sci 81:62–69CrossRefGoogle Scholar
  32. 32.
    Klein Entik RH, Fransman W, Brouwer D (2011) How to statistically analyse nano exposure measurement results: using an ARIMA time series approach. J Nanopart Res 123:6991–7004CrossRefGoogle Scholar
  33. 33.
    Koivisto AJ, Yu M, Hämeri K, Seipenbusch M (2012) Size resolved particle emission rates from an evolving indoor aerosol system. Aerosol Sci 47:58–69CrossRefGoogle Scholar
  34. 34.
    Kuhlbusch TAJ, Asbach C, Fissan H, Göhler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces – a review. Part Fibre Toxicol 8:22CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials – part A. J Occup Environ Hyg 7:127–132CrossRefPubMedGoogle Scholar
  36. 36.
    Methner M, Hodson L, Geraci C (2010c) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—Part B: results from 12 field studies. J Occup Environ Hyg 7:163–176CrossRefPubMedGoogle Scholar
  37. 37.
    NIOSH (1994) Method 5040: elemental carbon (diesel particulate) method. NIOSH manual of analytical methods, 4th edn. NIOSH, Cincinnati, OH. DHHS (NIOSH)Google Scholar
  38. 38.
    NIOSH (1998) Method 0600: particulates not otherwise regulated (respirable) NIOSH manual of analytical methods, 4th edn. NIOSH, Cincinnati, OH. DHHS (NIOSH)Google Scholar
  39. 39.
    NIOSH (2003) Method 7300: elements by ICP. NIOSH manual of analytical methods, 4th edn. NIOSH, Cincinnati, OH. DHHS (NIOSH)Google Scholar
  40. 40.
    NIOSH (2011) Current intelligence bulletin 63: occupational exposure to titanium dioxide. U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 2011–160, CincinnatiGoogle Scholar
  41. 41.
    NIOSH (2013) Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 2013–145Google Scholar
  42. 42.
    Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59CrossRefPubMedGoogle Scholar
  43. 43.
    OECD (2015) Harmonized tiered approach to measure and assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. OECD Health and Safety Publications. Series on the Safety of Manufactured Nanomaterials. No.55. ENV/JM/MONO(2015)19Google Scholar
  44. 44.
    Oberdörster G (1996) Significance of particle parameters in the evaluation of dose-response relationships of inhaled particles. Inhal Toxicol 8 Suppl:73–89PubMedGoogle Scholar
  45. 45.
    Peters TM, Elzey S, Johnson R, Park H, Grassian VH, Maher T, O’Shaughnessy P (2009) Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg 6:73–81Google Scholar
  46. 46.
    Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, Thomas T, Demokritou P (2014) Consumer exposures to laser printer-emitted engineered nanoparticles: a case study of life-cycle implications from nano-enabled products. Nanotoxicology 11:1–9Google Scholar
  47. 47.
    Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746CrossRefPubMedGoogle Scholar
  48. 48.
    Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van Duuren-Stuurman B, Van Tongeren M, Tielemans E (2011) Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 21:450–463CrossRefPubMedGoogle Scholar
  49. 49.
    Seipenbusch M, Binder A, Kasper G (2008) Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg 52:707–716PubMedGoogle Scholar
  50. 50.
    Silva RM, Xu J, Saiki C, Anderson DS, Franzi LM, Vulpe CD, Gilbert B, Van Winkle LS, Pinkerton KE (2014) Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation. Part Fibre Toxicol 11:52CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sun TY, BornhÖft NA, Hungerbühler K, Nowack B (2016) Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environ.Sci. Technol., 50:4701–4711Google Scholar
  52. 52.
    Van Broekhuizen P, Van Broekhuizen F, Cornelissen R, Reijnders L (2012) Workplace exposure to nanoparticles and the application of provisional nanoreference values in times of uncertain risks. J Nanopart Res 14:770CrossRefGoogle Scholar
  53. 53.
    Mills JB, Parka JH, Petersa TM (2014) Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols. J Occup Environ Hyg 10:250–258CrossRefGoogle Scholar
  54. 54.
    Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, Byrne F et al (2011) Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–2600CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    UK NanoSafety Partnership Group (UKNSPG) 20120 Working Safely with Nanomaterials in Research & DevelopmentGoogle Scholar
  56. 56.
    Verma NK, Moore E, Blau W, Volkov Y, Babu PR (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanopart Res 14:1137CrossRefGoogle Scholar
  57. 57.
    Witschger O, Le-Bihan O, Reynier M, Durand C, Charpentier D (2012) Préconisation en matière de caractérisation et d’exposition des potentiels d’emission et d’exposition professionnelle aux aerosols lors d’operations nanomateriaux, INRS – Hygiène et sécurité du travail – 1er trimester 2012, 226:41–55Google Scholar
  58. 58.
    Wijnhoven WEP, Oomen Ir AJ, Sips AJAM, Bourgeois FC, Dorsthorst GJPM te, Kooi MW, Bakker MI (2010) Development of an inventory for consumer products containing nanomaterials. DG Environment within the framework of ENV/D3/SER/2010/0060rGoogle Scholar
  59. 59.
    Zhao M, Gu X, Lowther SE, Park C, Jean YC, Nguyen T (2010) Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy. Nanotechnology, 20;21(33):339801Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Araceli Sánchez Jiménez
    • 1
  • Martie van Tongeren
    • 1
    Email author
  1. 1.Centre for Human Exposure Science (CHES)Institute of Occupational MedicineEdinburghUK

Personalised recommendations