Advertisement

Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them

  • Rambabu AtluriEmail author
  • Keld Alstrup Jensen
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 947)

Abstract

Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

Keywords

Nanomaterials Nanoparticles Nanostructures Physico-Chemical Characterization Properties Microscopy Spectroscopy Specific Surface Area Functionalization 

Notes

Acknowledgements

We gratefully acknowledge that this chapter was written with financial support from the EU FP7 project NANoREG (Grant 310584) and the Danish Centre for Nano-Safety funded by the Danish Work Environment Fund (Grant 49803).

References

  1. 1.
    Appendix R7-1 recommendations for nanomaterials applicable to chapter R7a endpoint specific guidance (2012)Google Scholar
  2. 2.
    Appendix R7-1 recommendations for nanomaterials applicable to chapter R7b endpoint specific guidance (2014a)Google Scholar
  3. 3.
    Nanomaterials producers directory 2014–2015 (2014b) Future Markets IncGoogle Scholar
  4. 4.
    Atluri R, Bacsik Z, Hedin N, Garcia-Bennett AE (2010) Structural variations in mesoporous materials with cubic Pm(3)over-barn symmetry. Micropor Mesopor Mat 133(1–3):27–35CrossRefGoogle Scholar
  5. 5.
    Atluri R, Keld Alstrup J (2014) Classification and reporting of nanostructured silica materials. ManuscriptGoogle Scholar
  6. 6.
    Atluri R, Sakamoto Y, Garcia-Bennettt AE (2009) Co-structure directing agent induced phase transformation of mesoporous materials. Langmuir 25(5):3189–3195CrossRefPubMedGoogle Scholar
  7. 7.
    Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32:33–45CrossRefGoogle Scholar
  8. 8.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc 114(27):10834–10843CrossRefGoogle Scholar
  9. 9.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  10. 10.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRefGoogle Scholar
  11. 11.
    De Temmerman PJ, Verleysen E, Lammertyn J, Mast J (2014) Semi-automatic size measurement of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol 261:191–200CrossRefGoogle Scholar
  12. 12.
    Delgado JL, Filippone S, Giacalone F, Herranz MA, Illescas B, Perez EM, Martin N (2014) Buckyballs. Top Curr Chem 350:1–64CrossRefPubMedGoogle Scholar
  13. 13.
    Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Eckert M (2012) Max von Laue and the discovery of X-ray diffraction in 1912. Ann Phys 524(5):A83–A85CrossRefGoogle Scholar
  15. 15.
    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydin AO, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021CrossRefPubMedGoogle Scholar
  16. 16.
    Freestone I, Meeks N, Sax M, Higgitt C (2007) The lycurgus cup – a Roman nanotechnology. Gold Bulletin 40(4):270–277CrossRefGoogle Scholar
  17. 17.
    Gaffet E (2011) Nanomaterials: a review of the definitions, applications, health effects. How to implement secure development. C R Phys 12(7):648–658CrossRefGoogle Scholar
  18. 18.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRefPubMedGoogle Scholar
  19. 19.
    Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U (2014) Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56(2):183–203Google Scholar
  20. 20.
    Jana NR, Earhart C, Ying JY (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 19(21):5074–5082CrossRefGoogle Scholar
  21. 21.
    Janez P (2010) European Commission recommendation on the definition of the term “Nanomaterial”. O J E U 275 (L)(L):38–40Google Scholar
  22. 22.
    Jensen KA, Pojana G, Bilanicora D (2014) Characterization of manufactured nanomaterials, dispersion and exposure characterization for toxicological testing. In: Monterio NA, Tran CL (eds) Nanotoxicology: progress towareds nanomedicine. Taylor & Francis, Boca Raton, pp 45–73CrossRefGoogle Scholar
  23. 23.
    Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JH, Shim BS, Kim HS, Lee YJ, Min SK, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf-Green Tech 2(2):197–213CrossRefGoogle Scholar
  25. 25.
    Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  26. 26.
    Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II 205:49–96CrossRefGoogle Scholar
  27. 27.
    Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. BBA-Gen Subjects 1810(3):361–373CrossRefGoogle Scholar
  28. 28.
    Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128(3):968–975CrossRefPubMedGoogle Scholar
  29. 29.
    Lin W, Huang Y w, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Y, Zhao YL, Sun BY, Chen CY (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713CrossRefPubMedGoogle Scholar
  31. 31.
    Murthy CR, Gao B, Tao AR, Arya G (2015) Automated quantitative image analysis of nanoparticle assembly. Nanoscale 7(21):9793–9805CrossRefPubMedGoogle Scholar
  32. 32.
    Peng XH, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196CrossRefPubMedGoogle Scholar
  33. 33.
    Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, Mortensen A, Jackson P, Kyjovska ZO, Molhave K, Jacobsen NR, Jensen KA, Yauk CL, Wallin H, Halappanavar S, Vogel U (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284(1):16–32CrossRefPubMedGoogle Scholar
  34. 34.
    Prymak O, Ristig S, Meyer-Zaika V, Rostek A, Ruiz L, Gonzalez-Calbet J, Vallet-Regi M, Epple M (2014) X-ray powder diffraction as a tool to investigate the ultrastructure of nanoparticles. Russ Phys J 56(10):1111–1115CrossRefGoogle Scholar
  35. 35.
    Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74CrossRefPubMedGoogle Scholar
  36. 36.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592CrossRefPubMedGoogle Scholar
  37. 37.
    Sager TM, Kommineni C, Castranova V (2008) Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sivakumar S, Diamente PR, van Veggel FC (2006) Silica-coated Ln(3+)-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem Eur J 12(22):5878–5884CrossRefPubMedGoogle Scholar
  39. 39.
    Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3(4):579–592CrossRefPubMedGoogle Scholar
  41. 41.
    Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12(1):129–142CrossRefPubMedGoogle Scholar
  42. 42.
    Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230(1):90–104CrossRefPubMedGoogle Scholar
  43. 43.
    Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10):3273–3286CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang H, Zhuang Y, Hu H, Du X, Zhang C, Shi X, Wu H, Yang S (2010) Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv Funct Mater 20(11):1733–1741CrossRefGoogle Scholar
  45. 45.
    Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127(14):4990–4991CrossRefPubMedGoogle Scholar
  46. 46.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552CrossRefPubMedGoogle Scholar
  47. 47.
    Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRefPubMedGoogle Scholar
  48. 48.
    Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957CrossRefPubMedGoogle Scholar
  49. 49.
    Zuin S, Pojana G, Marcomini A (2007) Effect-oriented characterization of nanomaterials. Nanotoxicology: characterization, dosing, and health effects. Taylor & Francis, New York, pp 19–57Google Scholar
  50. 50.
    Schneider T, Jensen KA (2009) Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles. J Nanopart Res 11 (7):1637–1650Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National Research Centre for the Working Environment (NRCWE)CopenhagenDenmark

Personalised recommendations