Skip to main content

Use of Earthworms in Biomonitoring of Soil Xenobiotics

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

Assessment of soil health and contamination of terrestrial ecosystems by xenobiotics exposure is of paramount importance due to specific contaminant dynamics and bioavailability. Owing to their peculiar morphological characteristics and ecological importance, earthworms are considered important biomonitoring organisms to give the accurate and early warning clues about soil quality assessments. They are important part of soil biomass and are called as “soil engineers” regulating various soil processes including fertilization, organic matter decomposition, and soil quality maintenance. Ecological importance, ease in handling, sampling, identification, and analysis make them good bioindicators for monitoring programs. Earthworms can be used as reaction as well as accumulation bioindicators; however, in both cases, environmental factors may alter their efficacy. The biochemical fluids and blood of these organisms provide novel, sensitive, and nondestructive biomarkers for xenobiotics monitoring. The granulocyte morphometric alteration can be exploited as suitable biomarker of effect that could be included in a multibiomarker strategy. Metallothioneins, acetylcholinesterase, hemoglobin oxidation, as well as other cellular and genotoxic biomarkers of earthworms are frequently employed as indication of exposure and effect of xenobiotics in polluted soil environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberti G, Hauk B, Kohler HR, Storch V (1996) Decomposition. Ecomed, Landsberg

    Google Scholar 

  • Ali SA, Khan I, Ali AS (2006) Friendly earthworms. Sci Rep CSIR New Delhi 43(1):28–30

    Google Scholar 

  • Aly MA, Schröder P (2008) Effect of herbicides on glutathione S-transferases in the earthworm, Eisenia fetida. Environ Sci Pollut Res Int 15:143–149

    Article  PubMed  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76(2):160–202

    Article  CAS  PubMed  Google Scholar 

  • Andersen C, Laurensen J (1982) Distribution of heavy metals in Lumbricus terrestris. Aporrectodea longa and A. rosea measured by atomic absorption and X-ray fluorescence spectrometry. Pedobiologia 24:347–356

    CAS  Google Scholar 

  • Andre J, Charnock J, Sturzenbaum SR, Kille P, Morgan AJ, Hodson ME (2009) Metal speciation in field populations of earthworms with multi-generational exposure to metalliferous soils: cell fractionation and high energy synchrotron analysis. Environ Sci Technol 43(17):6822–6829

    Article  CAS  PubMed  Google Scholar 

  • Barlett MD, Briones MJI, Neilson R, Schmidt O, Spurgeon D, Creamer RE (2010) A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol 46(2):67–73

    Article  Google Scholar 

  • Beyer WN, Gish CD (1980) Persistence in earthworms and potential hazards to birds of soil applied DDT, dieldrin and heptachlor. J Appl Ecol 17:295–307

    Article  CAS  Google Scholar 

  • Beyer WN, Stafford C (1993) Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes Region. Environ Monit Assess 24:151–165

    Article  CAS  PubMed  Google Scholar 

  • Booth LH, O’Halloran K (2001) A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environ Toxicol Chem 20(11):2494–2502

    Article  CAS  PubMed  Google Scholar 

  • Brulle F, Mitta G, Leroux R, Lemière S, Leprêtre A, Vandenbulcke F (2007) The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: a trade-off mechanism? Comp Biochem Physiol C 144(4):334–341

    CAS  Google Scholar 

  • Buckerfield JC, Lee KE, Davoren CW, Hannay JN (1997) Earthworms as indicators of sustainable production in dryland cropping in southern Australia. Soil Biol Biochem 29:547–554

    Article  CAS  Google Scholar 

  • Burch SW, Fitzpatrick LC, Goven AJ, Venables BJ, Giggleman MA (1999) In vitro earthworm coelomocyte assay for use in terrestrial identification evaluation. Bull Environ Contam Toxicol 52:547–554

    Article  Google Scholar 

  • Calisi A, Lionetto MG, Schettino T (2009) Pollutant-induced alterations of granulocyte morphology in the earthworm Eisenia foetida. Ecotoxicol Environ Saf 72(5):1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Calisi A, Lionetto MG, Sanchez-Hernandez JC, Schettino T (2011) Effect of heavy metal exposure on blood haemoglobin concentration and methemoglobin percentage in Lumbricus terrestris. Ecotoxicology 20(4):847–854

    Article  CAS  PubMed  Google Scholar 

  • Cotelle S, Ferard JF (1999) Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34(4):246–255

    Article  CAS  PubMed  Google Scholar 

  • Dauwe T, Janssens E, Eens M (2006) Effects of heavy metal exposure on the condition and health of adult great tits (Parus major). Environ Pollut 140(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Demuynck S, Grumiaux F, Mottier V, Schikorski D, Lemière S, Leprêtre A (2006) Metallothionein response following cadmium exposure in the oligochaete Eisenia fetida. Comp Biochem Physiol C 144:134–146

    Google Scholar 

  • Emmerling C, Paulsch D (2001) Improvement of earthworm (Lumbricidae) community and activity in mine soils from open-cast coal mining by the application of different organic waste materials. Pedobiologia 45(5):396–407

    Article  Google Scholar 

  • Engelmann P, Molnar L, Palinkas L, Cooper EL, Nemeth P (2004) Earthworm leukocyte populations specifically harbor lysosomal enzymes that may respond to bacterial challenge. Cell Tissue Res 316:391–401

    Article  CAS  PubMed  Google Scholar 

  • Ernst G, Zimmermann S, Christie P, Frey B (2008) Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environ Pollut 156:1304–1313

    Article  CAS  PubMed  Google Scholar 

  • Frenzilli G, Nigro M, Scarcelli V, Gorbi S, Regoli F (2001) DNA integrity and total oxyradical scavenging capacity in the Mediterranean mussel, Mytilus galloprovincialis: a field study in a highly eutrophicated coastal lagoon. Aqua Toxicol 53:1932

    Article  Google Scholar 

  • Fugere N, Brousseau P, Krzystyniak K, Coderre D, Fourier M (1996) Heavy metal-specifi c inhibition of phagocytosis and different in vitro sensitivity of heterogeneous coelomocytes from Lumbricus terrestris (Oligochaeta). Toxicology 109:157–166

    Article  CAS  PubMed  Google Scholar 

  • Handy R, Galloway T, Depledege M (2003) A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicology 12:331–343

    Article  CAS  PubMed  Google Scholar 

  • Hans RK, Khan MA, Farooq M, Beg MU (1993) Glutathione-Stransferase activity in an earthworm (Pheretima posthuma) exposed to three insecticides. Soil Biol Biochem 25:509–511

    Article  CAS  Google Scholar 

  • Hartsock WJ, Cohen JD, Segal DJ (2007) Uranyl acetate as a direct inhibitor of DNA binding proteins. Chem Res Toxicol 20:784–789

    Article  CAS  PubMed  Google Scholar 

  • Henson-Ramsey H, Levine J, Kennedy-Stoskopf S, Taylor SK, Shea D, Stoskopf MK (2009) Development of a dynamic pharmacokinetic model to estimate bioconcentration of xenobiotics in earthworms. Environ Model Assess 14:411–418

    Article  Google Scholar 

  • Homa J, Stürzenbaum SR, Morgan AJ, Plytycz B (2007) Disrupted homeostasis in coelomocytes of Eisenia fetida and Allolobophora chlorotica exposed dermally to heavy metals. Euro J Soil Biol 43:273–280

    Article  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London

    Google Scholar 

  • Jager T (1998) Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms. Environ Toxicol Chem 17:2080–2090

    Article  CAS  Google Scholar 

  • Jajer T, Fleuren RHLJ, Hogendoorn EA, de Korte G (2003) Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37(15):3399–3404

    Article  Google Scholar 

  • Jamieson BGM, (1992) Oligochaeta. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates, Wiley, New York, pp 217–322. ISBN 978-0471561170

    Google Scholar 

  • Kale RD, Karmegam N (2010) The role of earthworms in tropics with emphasis on Indian ecosystems. Appl Environ Soil Sci 2010:16

    Article  Google Scholar 

  • Kammenga JE, Dallinger R, Donker MH, Köhler HR, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Contam Toxicol 164:93–147

    CAS  PubMed  Google Scholar 

  • Khan I, SA A, Ali SA (2007) Biomass and behavioural responses of earthworm L. terrestris to Copper Chloride. Iran J Toxicol 2:64–71

    Google Scholar 

  • Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Lanno R, Wells J, Conder J, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    Article  CAS  PubMed  Google Scholar 

  • Lavelle P, Spain A (2001) Soil ecology. Kluwer Scientific, Amsterdam. ISBN 978-0-7923-7123-6

    Google Scholar 

  • Lionetto MG, Calisi A, Schettino T (2012) Earthworms biomarkers as tools for soil pollution assessment. In: Hernandz-Soriano MC (ed) Soil health and land use management. InTech-Open Access Publisher in Science, Technology and Medicine, Rijeka, pp 305–332

    Google Scholar 

  • Lukaszewicz-Hussain A (2010) Role of oxidative stress in organophosphate insecticide toxicity short review. Pestic Biochem Physiol 98:145–150

    Article  CAS  Google Scholar 

  • Ma WC, van Kleunen A, Immerzeel J, de Maagd PGJ (1998) Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: assessment of equilibrium partitioning theory in in-situ studies and water experiments. Environ Toxicol Chem 17:730–1737

    Article  Google Scholar 

  • Maity S, Roy S, Chaudhury S, Bhattacharya S (2008) Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environ Pollut 151(1):17

    Article  Google Scholar 

  • Maity S, Roy S, Bhattacharya S, Chaudhury S (2011) Metallothionein responses in the earthworm Lampito mauritii (Kinberg) following lead and zinc exposure: a promising tool for monitoring metal contamination. Eur J Soil Biol 47:69–71

    Article  CAS  Google Scholar 

  • Marino F, Ligero A, Cosin DJD (1992) Heavy metals and earthworms on the border of a road next to Santiago. Soil Biol Biochem 24(12):705–1709

    Article  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definition, strategies and principles for bioindication/biomonitoring of the environment. In: BA M et al (eds) Bioindicators and biomonitors. Trace metals and other contaminants in the environment, vol 6. Elsevier, Amsterdam, pp 3–40

    Google Scholar 

  • Min KS (2007) The physiological significance of metallothionein in oxidative stress. J Pharmaceut Soc Jpn 127(4):695–702

    CAS  Google Scholar 

  • Morgan JE, Morgan AJ (1999) The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Appl Soil Ecol 13:9–20

    Article  Google Scholar 

  • Morgan AJ, Turner MP, Morgan JE (2002) Morphological plasticity in metal sequestering earthworm chloragocytes: morphometric electron microscopy provides a biomarker of exposure in field populations. Environ Toxicol Chem 21(3):610–618

    Article  CAS  PubMed  Google Scholar 

  • Morgan AJ, Stürzenbaun SR, Winters C, Grime GW, Aziz NAA, Kille P (2004) Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues. Ecotoxicol Environ Saf 57(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ Sci Technol 34(4):709–713

    Article  CAS  Google Scholar 

  • Nahmani J, Hodson ME, Devin S, Vijver MG (2009) Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. Environ Pollut 157:2622–2628

    Article  CAS  PubMed  Google Scholar 

  • Ndayibagira A, Sunahara GI, Robidoux PY (2007) Rapid isocratic HPLC quantification of metallothionein-like proteins as biomarkers for cadmium exposure in the earthworm Eisenia andrei. Soil Biol Biochem 39(1):194–201

    Article  CAS  Google Scholar 

  • Neuhauser EF, Cukic ZV, Malecki MR, Loehr RC, Durkin PR (1995) Bioconcentration and biokinetics of heavy metals in the earthworm. Environ Pollut 89:293–301

    Article  CAS  PubMed  Google Scholar 

  • Novais SC, Gomes SIL, Gravato C, Guilhermino L, De Coen W, Soares AMVM, Amorim MJB (2011) Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environ Pollut 159(7):1836–1843

    Article  CAS  PubMed  Google Scholar 

  • Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155

    Article  Google Scholar 

  • Peijnenburg WJGM (2002) Bioavailability of metals to soil invertebrates. In: HE Allen (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes, and plants, Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 89–112. ISBN 978-1880611463

    Google Scholar 

  • Peijnenburg WJGM, Vrijver MG (2009) Earthworms and their use in eco(toxico)logical modeling. In: Deviller J (ed) Ecotoxicology modeling. Springer, Heidelberg, pp 177–204

    Chapter  Google Scholar 

  • Peijnenburg WJGM, Posthuma L, Eijsackers HPJ, Allen HE (1997) A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicol Environ Saf 37:163–172

    Article  CAS  PubMed  Google Scholar 

  • Prinsloo MW, Reinecke SA, Przybylowicz WJ, Mesjas-Przybylowicz J, Reinecke AJ (1990) Micro-PIXE studies of Cd distribution in the nephridia of the earthworm Eisenia fetida (Oligochaeta). Nucl Instrum Methods Phys Res B 158:317–322

    Article  Google Scholar 

  • Rahtkens K, von der Trenck T (2006) Schwermetalle in Regenwurmern Baden-Wurttembergs. Umweltwissenschaften Schadstoff-Forschung 18(3):164–173

    Article  CAS  Google Scholar 

  • Rao JV, Pavan YS, Madhavendra SS (2003) Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicol Environ Saf 54(3):296–301

    Article  Google Scholar 

  • Rault M, Mazzia C, Capowiez Y (2007) Tissue distribution and characterization of cholinesterase activity in six earthworm species. Comp Biochem Physiol B Biochem Mol Biol 147:2340–2346

    Article  Google Scholar 

  • Reinecke SA, Reinecke AJ (2004) The comet assay as biomarker of heavy metal genotoxicity in earthworms. Arch Environ Contam Toxicol 46:208–215

    CAS  PubMed  Google Scholar 

  • Ribera D, Narbonne JF, Arnaud C, Saint-Denis M (2001) Biochemical responses of the earthworm Eisenia foetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biol Biochem 33:1123–1130

    Article  CAS  Google Scholar 

  • Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. Rev Environ Contam Toxicol 165:117–159

    CAS  PubMed  Google Scholar 

  • Sforzini S, Saggese I, Oliveri L, Viarengo A, Bolognesi C (2010) Use of the comet and micronucleus assays for in vivo genotoxicity assessment in the coelomocytes of the earthworm Eisenia andrei. Comp Biochem Physiol Part A 157(1):S13

    Article  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1995) Extrapolation of the laboratory based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology 4:190–205

    Article  CAS  PubMed  Google Scholar 

  • Spurgeon DJ, Weeks JM, Van Gestel CAM (2003) A summary of eleven years progress in earthworm ecotoxicology: the 7th international symposium on earthworm ecology, Cardiff, Wales, 2002. Pedobiologia 47(5–6):588–606

    Google Scholar 

  • Strzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms. Identification of a cadmium-specific metallothionein. J Biol Chem 276(36):34013–34018

    Article  Google Scholar 

  • Tischer S (2009) Earthworms (Lumbricidae) as bioindicators: the relationship between in-soil and in-tissue heavy metal content. Pol J Ecol 57:531–541

    Google Scholar 

  • USDA-NRCS (2009) Earthworms. Soil quality indicator information sheet. http://soils.usda.gov/SQI/assessment/files/earthworms_sq_biological_indicator_sheet.pdf

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • Van Gestel CAM, Van Brummelen TC (1996) Incorporation of the biomarkers concept in ecotoxicology calls for a redefinition of terms. Ecotoxicology 5:217–225

    Article  CAS  PubMed  Google Scholar 

  • Vasseur P, Bonnard M (2014) Ecogenotoxicology in earthworms: a review. Curr Zool 60:255–272

    Article  CAS  Google Scholar 

  • Vijver MG, Vink JPM, Miermans CJH, Van Gestel CAM (2003) Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35(1):125–132

    Article  CAS  Google Scholar 

  • Wallwork JA (1983) Annelids: the first coelomates. earthworms biology. Edward Arnold, London. ISBN 0713128844

    Google Scholar 

  • Weeks JM (1995) The value of biomarkers for ecological risk assessement: academic toys of legislative tools? J Appl Ecol 2:215–216

    Google Scholar 

  • Weeks JM, Svendsen C (1996) Neutral-red retention by lysosomes from earthworm coelomocytes: a simple biomarker for exposure of soil invertebrates. Environ Toxicol Chem 15:1801–1805

    Article  CAS  Google Scholar 

  • Zinkl JG, Lockhart WL, Kenny SA, Ward FJ (1991) The effects of cholinesterase inhibiting insecticides on fish. In: Mineau P (ed) Cholinesterase inhibiting insecticides: their impact on wildlife and the environment. Elsevier, Amsterdam, pp 233–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Dawood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dawood, M., Wahid, A., Hashmi, M.Z., Mukhtar, S., Malik, Z. (2017). Use of Earthworms in Biomonitoring of Soil Xenobiotics. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_6

Download citation

Publish with us

Policies and ethics