Skip to main content

Prominences on Xenobiotic Degradation Underneath of Ecological Sanitary

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

Establishment of new industries or enlargement of ongoing industrial settings resulted in the discarding of industrialized effluents, which exonerate unprocessed effluents instigating water, soil, and air–soil solid waste pollution. Such discharged ingredients have huge perseverance abilities and at the same time can be changed into noxious intractable up on merging with other eco-particles or synthetic products. Remediation is the only option to hold these virtual xenobiotic complexes and henceforth to decrease the risks triggered by them. Moreover, numerous elements have been realized for degrading these tough complexes; bioremediation stage is demonstrated to display the substantial effect on them. Giving a concise remark on classes of xenobionts and their influence on the environment, the current chapter endeavors to showcase the different xenobiotic squalor approaches in terms of microbial bioremediation. Here we report the microbial enzymatic roles explicitly for xenobiotic compound degradation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghamiri SF, Kabiri K, Emtiazi G (2011) A novel approach for optimization of crude oil bioremediation in soil by the Taguchi method. J Pet Environ Biotechnol 2:108

    Article  Google Scholar 

  • Alcock RE, Jones KC (1996) Dioxins in the environment: a review of trend data. Environ Sci Technol 30:3133–3143

    Article  CAS  Google Scholar 

  • Ali Elredaisy SM (2010) Ecological benefits of bioremediation of oil contaminated water in rich savannah of palogue, Upper Nile Area-Southern Sudan. J Bioremed Biodegrad 1:103

    Article  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Biorem Biodegrad 1:1–8

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgense BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson JF, Pietari JM (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut 107:209–215

    Article  CAS  PubMed  Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeterior Biodegrad 86(C):300–308

    Article  CAS  Google Scholar 

  • Gayathri KV, Vasudevan N (2010) Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment. J Bioremed Biodegrad 1:104

    Google Scholar 

  • Gursahani YH, Gupta SG (2011) Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Pet Environ Biotechnol 2:111

    Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Critical Rev Biotechnol 26:201–221

    Article  CAS  Google Scholar 

  • Indu ST (2006) Xenobiotics: pollutants and their degradation-methane, benzene, pesticides, bioabsorption of metals: http://nsdl.niscair.res.in/jspui/bitstream/123456789/664/1/Xenobiotics.pdf

  • Jame SA, Rashidul Alam AKM, Fakhruddin ANM, Alam MK (2010) Degradation of phenol by mixed culture of locally isolated pseudomonas species. J Bioremed Biodegrad 1:102

    Article  CAS  Google Scholar 

  • Jiang XW, Liu XH, Wang Y, Leak SJ, Zhou DJ (2009) Genetic and biochemical analyses of chlorobenzene degradation gene clusters in Pandoraea sp. strain MCB032. Arch Microbiol 191:485–492

    Article  CAS  PubMed  Google Scholar 

  • Karigar CS, Rao, SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:11, 805187

    Google Scholar 

  • King RB, Long GM, Sheldon JK (1997) Practical environmental bioremediation: the field guide, 2nd edn. Lewis, Boca Raton

    Google Scholar 

  • Kumar V, Anand RC, Singh R (1994a) Enrichment and isolation of acetoclastic methanogens from distillery effluent. Ann Biol 10:253–256

    Google Scholar 

  • Kumar V, Anand RC, Singh R (1994b) Methanogenesis by pure isolates from distillery effluent digester. Ann Biol 10:257–260

    Google Scholar 

  • Kumar M, Kumar V, Varma A, Pal A, Arshi A, Sharma A, Singh J (2016) An efficient approach towards the bio-remediation of copper, cobalt and nickel contamination from environmental field samples. J Soils Sediment 16:1–10

    Article  Google Scholar 

  • Kyrikou J, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    Article  CAS  Google Scholar 

  • Le NB, Coleman NV (2011) Biodegradation of vinyl chloride, cis-dichloroethane and 1,2- dichloroethane in the alkene/alkane oxidising mycobacterium strain NBB4. Biodegradation 22:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • le Mellec A, Karg J, Bernacki Z, Slowik J, Korczynski I et al (2010) Effects of insect mass outbreaks on throughfall composition in even aged European Pine Stands—implications for the C and N cycling. J Earth Sci Climat Change 1:101–110

    Article  Google Scholar 

  • Nagamani B, Chandana Lakshmi MVV, Sridevi V (2011) Enhanced biodegradation of phenol by Pseudomonas pseudomallei with additional carbon sources. World Congress of Biotechnology, New Delhi

    Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU et al (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernandez ML, Quintero-Ramirez R, Nava-Ocampo AA, Bello-Ramirez AM (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam Clin Pharmacol 17:717–723

    Article  CAS  PubMed  Google Scholar 

  • Patil R, Bagde US (2012) Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. Afr J Biotechnol 11:7947–7956

    CAS  Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45:1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reshma SV, Spandana S, Sowmya M (2011) Bioremediation technologies. World Congress of Biotechnology, New Delhi

    Google Scholar 

  • Schumacher W, Holliger C (1996) The proton/electron ration of themenaquinone dependent electron transport from dihydrogen to tetrachloroethene in Dehalobacter restrictu. J Bacteriol 178:2328–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethy NK, Jha VN, Sahoo SK, Shukla AK, Tripathi RM et al (2011) Ground water ingestion dose due to intake of radionuclide (natural U and 226Ra) to population around uranium mining complex at Jaduguda. J Ecosyst Ecograph 1:104

    Google Scholar 

  • Sharma J, Fulekar MH (2009) Potential of Citrobacter freundii for bioaccumulation of heavy metal copper. Biol Med 1:7–14

    CAS  Google Scholar 

  • Sharma SK, Saxena M, Mandal TK, Ahammed YN, Pathak H et al (2011) Variations in mixing ratios of ambient ammonia, nitric oxide and nitrogen dioxide in different environments of India. J Food Process Technol 1:101

    Google Scholar 

  • Shen YJ, Lu P, Mei H, Yu HJ, Hong Q, Li SP (2010) Isolation of a methyl parathion degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4:1–6

    CAS  Google Scholar 

  • Sridevi V, Lakshmi MVVC, Swamy AVN, Rao MN (2011) Implementation of response surface methodology for phenol degradation using Pseudomonas putida (NCIM 2102). J Bioremed Biodegrad 2:121

    Article  CAS  Google Scholar 

  • Takami H, Kudo T, Horikoshi K (1997) Isolation of extradiol dioxygenase genes that is phylogenetically distant from other meta cleavage dioxygenase genes. Biosci Biotechnol Biochem 61:530–532

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Grunden AM (2010) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43

    Article  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wilson JT, McNabb JF, Cochran JW, Wang TH, Tomson MB et al (1985) Influence of microbial adaptation on the fate of organic pollutants in ground water. Environ Toxicol Chem 4:721–726

    CAS  Google Scholar 

  • Zhang C, Bennett N (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, V. et al. (2017). Prominences on Xenobiotic Degradation Underneath of Ecological Sanitary. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_24

Download citation

Publish with us

Policies and ethics