Skip to main content

Soil Xenobiotics and Their Phyto-chemical Remediation

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

Soil xenobiotics are mainly foreign substances polluting soil. They include dioxins, halocarbons having halogens in pesticides including polychlorinated biphenyls (PCBs ), synthetic polymers, and alkyl-benzyl sulfonates in detergents and mineral oil mixtures. They enter soils via the addition of agrochemicals, anthropic pollution, fallout from air, and volatilization. Plants can remove some of these xenobiotics by a process called phyto-remediation. This depends on plant species, environment, plant roots and its leaves, and growth magnitude. Some as cucurbits ( Cucurbita pepo and C. maxima) have big storing organs. Many mechanisms are done by plant to alleviate or nullify xenobiotics harm. A3-phase metabolism on xenobiotics could occur, i.e., (a) transformation changing the substance, (b) compartmentation confining it inside a confined space within plant tissues, and (c) conjugation joining two or more compounds together. Some microorganisms can degrade many xenobiotics in soil; however microenvironment conditions including pH, temperature, and others must be conducive to degradation. Chemo-remediation incurs using chemicals to detoxify/decrease xenobiotics in soil. Chemicals include solvents, oxidizers, acids, chelators, and immobilizers. Oxidizers dissociate xenobiotics into simpler non-harmful substances. Acids include amino-poly-carboxylic acids, natural acids, low-molecular-weight organic acids, humic acids, ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetetraacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), trans-1,2-cyclohexylene dinitrilo-tetraacetic acid (CDTA), ethylene glycol tetra-acetic acid (EGTA), (ethylenediamine-N,N′-bis(o-hydroxyphenyl)acetic acid (EDDHA), N-(2-hydroxyethyl)iminodiacetic acid (HEIDA), and (N,N0-bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED) of the solvent materials, solvents which dissolve non-water-soluble substances such as polychlorinated biphenyl (PCBs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Salam A, Salem HM, Abdel-Salam MA, Seleiman MF (2015) Phyto and chemical removal of heavy metal-contaminated soils. In: Sherameti I, Varma A (eds) Heavy metal contamination of soils: monitoring and remediation, Series soil biology. Springer, Zürich, pp 299–308

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation. Elsevier Science, Amsterdam

    Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  CAS  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert J, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Barak E, Jacoby B, Dinoor A (1983) Adsorption of systemic pesticides on ground stems and the apoplectic pathway of stems as related to lignification and lipophilicity of the pesticides. Pestic Biochem Physiol 20(2):194–202

    Article  CAS  Google Scholar 

  • Bell RM (1992) Higher plant accumulation of organic pollutants from soil. United States Environmental Protection Agency (USEPA), Washington, DC

    Google Scholar 

  • Bohme F, Welsch-Paulsch K, McLachlan MS (1999) Upltake of airborne semi-volatile organic compounds in agricultural plants: field measurements of interspecies variability. Environ Sci Technol 33(11):1805–1813

    Article  Google Scholar 

  • Bollag J (2002) Immobilization of pesticides in soil through enzymatic reactions. In: Agathos SN, Reineke W (eds) Biotechnology for the environments: soil remediation. Kluwer Academic, Dordrecht

    Google Scholar 

  • Brady CAL, Gill RA, Lynch PT (2003) Preliminary evidence for the metabolism of benzo(a)pyrene by plantagolanceolata. Environ Geochem Health 25(1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, McFarlane JC (eds) Plant contamination: modeling and simulation of organic chemical processes. Lewis, London, pp 38–64

    Google Scholar 

  • Buckley EH (1982) Accumulation of airborne polychlorinated-biphenyls in foliage. Science 216(4545):520–522

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain AC (1991) Radioactive aerosols. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chapman PM (2007) Determining when contamination is pollution: weight of evidence determinations for sediments and effluents. Environ Int 33:492–501

    Article  CAS  PubMed  Google Scholar 

  • Collins CD, Bell JN (1997) Absorption and adsorption of benzene by plants, following exposure during the final part of the growth cycle. Ministry of Agriculture, Fisheries and Food, Contaminants Division, London

    Google Scholar 

  • Collins CD, Cunningham N (2005) Modelling the fate of sulphur 35 in crops: 2. Development and validation of the CROPS-35 model. Environ Pollut 133(3):439–445

    Article  CAS  PubMed  Google Scholar 

  • Collins CD, Finnegan E (2010) Modeling the plant uptake of organic chemicals, including the soil-air-plant pathway. Environ Sci Technol 44(3):998–1003

    Article  CAS  PubMed  Google Scholar 

  • Collins CD, Fryer M, Grosso A (2006a) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Collins CD, Martin I, Fryer ME (2006b) Evaluation of models for predicting plant uptake of chemicals from soil (Science Report SC050021/SR). Environment Agency, Bristol

    Google Scholar 

  • Collins C, Martin I, Doucette W (2012) Plant uptake of xenobiotics. In: Schroder P, Collins CD (eds) Organic xenobiotics and plants: from mode of action to ecophysiology, Plant ecophysiology. Springer, London

    Google Scholar 

  • Compton HR, Harosi DM, Hirsch SR, Wrobel JG (1998) Pilot-scale use of trees to address voc contamination. In: Wickramanayake GB, Hinchee RE (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus

    Google Scholar 

  • Cousins IT, Mackay D (2001) Strategies for including vegetation compartments in multimedia models. Chemosphere 44(4):643–654

    Article  CAS  PubMed  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promise and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dercova K, Sejakova Z, Skokanova M, Barancikova G, Mkovnikova J (2006) Potential use of organo-mineral complex (OMC) for bioremediation of pentachlorophenol (PCP) in soil. Int Biodeterior Biodegrad 58:248–253

    Article  CAS  Google Scholar 

  • de-Valle-Zermeño R, Formosa J, Chimenos JM (2015) Low-grade magnesium oxide by-products for environmental solutions: characterization and geochemical performance. J Geochem Explor 152:143–144

    Google Scholar 

  • Doucette WJ (2003) Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environ Toxicol Chem 22(8):1771–1788

    Article  CAS  PubMed  Google Scholar 

  • Dreicer M, Hakonson TE, White GC, Whicker FW (1984) Rainsplash as a mechanism for soil contamination of plant-surfaces. Health Phys 46(1):177–187

    Article  CAS  PubMed  Google Scholar 

  • Duarte-Davidson R, Jones KC (1996) Screening the environmental fate of organic contaminants in sewage sludge applied to agricultural soils 2. The potential for transfers to plants and grazing animals. Sci Total Environ 185(1–3):59–70

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MW, Bauer U, Ebel M, Schaeffer A (2007) Evaluation of the effect of small organic acids on phyto-extraction of Cu and Pb from soil with tobacco(Nicotianatabacum). Chemosphere 68:345–353

    Article  CAS  PubMed  Google Scholar 

  • Fiorenza S, Oubre CL, Ward CH (2000) Phytoremediation of hydrocarbon-contaminated soils. CRC Press, Boca Raton

    Google Scholar 

  • Haberl R, Grego S, Langergraber G, Kadlec R, Cicalini AR, Dias MS, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soils Sediment 3:109–124

    Article  CAS  Google Scholar 

  • Hames D, Hooper N (2005) Instant notes in biochemistry. Taylor & Francis Group, New York

    Google Scholar 

  • Hellstrom A (2004) Uptake of organic pollutants in plants. Department of Environment and Assessments, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Hermam EM, Larkind BA (1999) Protein storage bodies and vacuoles. Plant Cell 11(4):601–613

    Article  Google Scholar 

  • Hsu FC, Marxmiller RL, Alex YA (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in de-topped soybean roots using a pressure chamber technique. Plant Physiol 93:1573–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulster A, Marschner H (1993) Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere 27(1–3):439–446

    Article  Google Scholar 

  • Hulster A, Muller J, Marschne H (1994) Soil-plant transfer of poly-chlorinated dibenzo-P-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28(6):1110–1115

    Article  Google Scholar 

  • Kao AS, Venkataraman C (1995) Estimating the contribution of re-entrainment to the atmospheric deposition of dioxin. Chemosphere 31(10):4317–4331

    Article  CAS  Google Scholar 

  • Karickhoff SW (1981) Semiempirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10(8):833–846

    Article  CAS  Google Scholar 

  • Karpouzas DG, Singh BK (2006) Microbial degradation of organo-phosphorus xenobiotics: metabolic pathways and molecular basis. Adv Microb Physiol 51:119–125

    Article  CAS  PubMed  Google Scholar 

  • Komives T, Gullner G (2005) Phase I xenobiotic metabolic systems in plants. Z-Naturforsch C 60(3–4):179–185

    CAS  PubMed  Google Scholar 

  • Little P, Wiffen RD (1977) Emission and deposition of petrol engine exhaust Pb: I. Deposition of exhaust Pb to plant and soil surfaces. Atmos Environ 11:437–447

    Article  CAS  PubMed  Google Scholar 

  • Mansuy D (2013) Metabolism of xenobiotics: beneficial and adverse effects. Biol Aujourdhui 1(207):33–37

    Article  Google Scholar 

  • Mattina MI, Eitzer B, Simon T (2002) Tracking persistent organic pollutants (POPs) through biotic and abiotic processes in the environment: Final Report. United States Environmental Protection Agency (USEPA)

    Google Scholar 

  • Mattina MI, White JC, Eitzer BD, Iannucci-Berge RW (2003) Uptake and translocation of air-borne and soil-bound persistent organic pollutants by Cucurbita pepo. In: 13th West coast conference contaminated soils, sediments and water, San Diego

    Google Scholar 

  • McCrady JK (1994) Vapor-phase 2,3,7,8-TCDD sorption to plant foliage: a species comparison. Chemosphere 28(1):207–216

    Article  CAS  Google Scholar 

  • McCrady JK, Maggard SP (1993) Uptake and photo degradation of 2,3,7,8-tetrachlorodibenzo-P-dioxin sorbed to grass foliage. Environ Sci Technol 27(2):343–350

    Article  CAS  Google Scholar 

  • McFarlane JC (1995) Plant contamination: modelling and simulation of organic chemical processes. CRC Press, Boca Raton

    Google Scholar 

  • McLachlan MS (1999) Framework for the interpretation of measurements of SOCs in plants. Environ Sci Technol 33:1799–1804

    Article  CAS  Google Scholar 

  • O’Connor GA, Kiehl D, Eiceman GA, Ryan JA (1990) Plant uptake of sludge-borne PCBs. J Environ Qual 19:113–118

    Article  Google Scholar 

  • Parameswaran A, Leitenmaier B, Yang M, Kroneck PM, Welte W, Lutz G, Papoyan A, Kochian LV, Kupper H (2007) A native Zn/Cd pumping P (1B) ATPase from natural overexpression in a hyperaccumulator plant. Biochem Biophys Res Commun 36:51–56

    Article  Google Scholar 

  • Parrish ZD, White JC, Isleyen M, Gent MP, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64(4):609–618

    Article  CAS  PubMed  Google Scholar 

  • Pinder JE, McLeod KW, Fide RF, Shenod KC (1991) Mass loading of soil particles on a pasture grass. J Environ Radioactiv 13:341–354

    Article  Google Scholar 

  • Rikken MG, Lijzen JP, Cornelese AA (2001) Evaluation of model concepts on human exposure. RIVM, Bilthoven

    Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17(2):82–84

    Article  CAS  PubMed  Google Scholar 

  • Schnoor JL (1997) Phytoremediation. Pittsburgh: National Environmental Technology Applications Center. Technol Eval Rep TE-97-01, National Environmental Technology Applications Center and the University of Pittsburgh, Pennsylvania

    Google Scholar 

  • Schreiber L, Schonherr J (1992) Uptake of organic-chemicals in conifer needles-surface adsorption and permeability of cuticles. Environ Sci Technol 26(1):153–159

    Article  CAS  Google Scholar 

  • Schröder P (2007) Exploiting plant metabolism for the phytoremediation of organic xenobiotics. In: Willey N (ed) Phytoremediation (methods and reviews). Humana, Totowa, pp 251–289

    Chapter  Google Scholar 

  • Schröder P, Collins CJ (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. J Phytorem 4(4):247–265

    Article  Google Scholar 

  • Schröder P, Collins CD (2011) Organic xenobiotics and plants: from mode of action to ecophysiology. Springer, Dordrecht

    Book  Google Scholar 

  • Schroll R, Scheunert I (1992) A laboratory system to determine separately the uptake of organic chemicals from soil by plant roots and by leaves after vaporization. Chemosphere 24:97–108

    Article  CAS  Google Scholar 

  • Schwitzguébel JP, Vanek T (2003) Fundamental advances in phytoremediation for xenobiotic chemicals. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 123–157

    Google Scholar 

  • Schwitzguébel JP, Page V, Martin-Dias S, Davies LC, Vasilyeva G, Strijakova E (2011) Using plants to remove forign compounds from contaminated water and soil. In: Collins P (ed) Organic xenobiotics and plants. Plant ecophysiology series. Springer, London

    Google Scholar 

  • Seleiman MF, Santanen A, Jaakkola S, Ekholm P, Hartikainen H, Stoddard FL, Mäkelä PSA (2013) Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenerg 59:477–485

    Article  CAS  Google Scholar 

  • Shang TQ, Gordon MP (2002) Transformation of C14 Trichloro-ethylene poplar suspension cells. Chemosphere 47(9):957–962

    Article  CAS  PubMed  Google Scholar 

  • Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Techol 29(12):2905–2914

    Article  CAS  Google Scholar 

  • Smelt JH, Leistra MA (1974) Hexachlorobenzene in soils and crops after soil treatment with penta-chloro-nitrobenzene. Agric Environ 1:65–71

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  PubMed  Google Scholar 

  • Susarla S, Medina V, McCutcheon S (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Thorne M, Maul P, Robinson P (2004) The PRISM food chain modelling software: model structures for PRISM 2.0. Report QRS-1198A-1. Food Standards Agency, London

    Google Scholar 

  • Topp E, Scheunert I, Attar A, Kort F (1986) Factors affecting the uptake of C14-labulled organic chemicals by plants from soil. Ecotoxicol Environ Saf 11:219–228

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one compartment model for the uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29:2333–2338

    Article  CAS  PubMed  Google Scholar 

  • Trapp M, McFarlane C (1995) Plant contamination. Lewis, Boca Raton

    Google Scholar 

  • Trapp S, Pussemeir L (1991) Model calculations and measurements of uptake and translocation of carbamates by bean plants. Chemosphere 22:327–345

    Article  CAS  Google Scholar 

  • Ugrekhelidze V, Phiriashvili V (2000) Uptake and transformation of some water phenolic pollutants by common duckweed (Lemna minor L.). Fresenius Environ Bull 9(7–8):483–488

    CAS  Google Scholar 

  • USDA (2015) Metabolism of herbicides or xenobiotics in plants. United States Department of Agriculture (USDA), National Institute of Food and Agriculture (NIFA), University of California, Davis

    Google Scholar 

  • USEPA (1996) Soil screening guidance: technical background document, EPA/540/R95/128.United States Environmental Protection Agency (USEPA), Washington, DC

    Google Scholar 

  • Weyens N, van der Lelie AT, Smeets K, Taghavi S, Newman L (2009a) Bio-augmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43(24):9413–9418

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009b) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16:830–843

    Article  CAS  Google Scholar 

  • White JC (2002) Differential bioavailability of field-weathered p, p′-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Wild SR, Berrow ML, Mcgrath S, Jones KC (1992) Polynuclear aromatic-hydrocarbons in crops from long-term field experiments amended with sewage-sludge. Environ Pollut 76(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Wolt JD, Smith JK, Sims JK, Duebelbeis DO (1996) Products and kinetics of cloransulam-methyl aerobic soil metabolism. J Agric Food Chem 44:324–332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud F. Seleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Salem, H.M., Abdel-Salam, A., Abdel-Salam, M.A., Seleiman, M.F. (2017). Soil Xenobiotics and Their Phyto-chemical Remediation. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_18

Download citation

Publish with us

Policies and ethics