Skip to main content

Bioavailability/Phytostabilization of Xenobiotics in Soil

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

  • 1416 Accesses

Abstract

Bioavailability of xenobiotics is not a single value that can be measured by a single chemical or even biological method. It is a process that, as any processes in nature, varies in time and space. Total xenobiotic concentrations in soil are, and most likely will be, considered in risk assessment of contaminated sites, even though they do not reflect the real environmental and health risk associated with the site contamination. Technological intervention in management and monitoring is needed to shorten the restoration time, maintenance costs, and final destination. The reviewed literature shows that evolution of phytoremediated sites is reflected in increased functionality of contaminated soils. Soil functions, being sensitive to the pedo-environmental conditions and responsible for biological nutrient cycles, can be used as synthetic indicators of the progress and also the efficiency of given phytostabilization approaches. However, their use should be coupled to the knowledge of the site history and related to the development of the soil profile and to the organic matter content and humification. It is concluded that further research should focus on systematic studies on the short- and long-term effects of gentle remediation technologies on soil biological parameters and on the identification of general and site-specific sensitive biological indicators for the restoration of soil functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, New York

    Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Critical review. Environ Sci Technol 34(20):4259–4265

    Article  CAS  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361

    Google Scholar 

  • Bohn HL, McNeal BL, O’Connor GA (2001) Soil chemistry. Wiley, New York

    Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: A green approach to contaminant containment. Adv Agron 112:145

    Article  CAS  Google Scholar 

  • Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic-matter. Sci Total Environ 123:205–217

    Article  PubMed  Google Scholar 

  • Buurman P, van Lagen B, Piccolo A (2002) Increase in stability against thermal oxidation of soil humic substances as a result of self association. Org Geochem 33:367–381

    Article  CAS  Google Scholar 

  • Casida JE, Lykken L (1969) Metabolism of organic pesticide chemicals in higher plants. Annu Rev Plant Physiol 20:607–636

    Article  CAS  Google Scholar 

  • Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ Pollut 141(3):396–401

    Article  CAS  PubMed  Google Scholar 

  • Dec J, Bollag JM (1997) Determination of covalent and noncovalent binding interactions between xenobiotic chemicals and soil. Soil Sci 162:858–874

    Article  CAS  Google Scholar 

  • Diehl D, Schneckenburger T, Krüger J, Goebel MO et al (2014) Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties. Environ Chem 11(6):709–718

    Article  CAS  Google Scholar 

  • Dodge AD (1989) Herbicides and plant metabolism, vol 38. Cambridge University Press, London

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Parihar L (2014) Bioremediation: step towards improving human welfare. Annu Res Rev Biol 4(20):3150

    Article  Google Scholar 

  • Keller C, Marchetti M, Rossi L, Lugon-Moulin N (2005) Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmiumcontaminated agricultural soils: a pot experiment. Plant Soil 276:69–84

    Article  CAS  Google Scholar 

  • Komosa D, Sandermann H (1992) Plant metabolism of herbicides with C-P bonds: phosphinotricin. Pest Biochem Physiol 43:95–102

    Article  Google Scholar 

  • Lu YF, Pignatello JJ (2004) Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum (III) ion cross-linking. J Environ Qual 33:1314–1321

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Mackova M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotech Adv 18(1):23–34

    Article  CAS  Google Scholar 

  • Madsen EL (1991) Determining in situ biodegradation: facts and challenges. Environ Sci Technol 25:1662–1673

    Article  CAS  Google Scholar 

  • Madsen EL (1998) Epistemology of environmental microbiology. Environ Sci Technol 32:429–539

    Article  CAS  Google Scholar 

  • Marschner B, Shchegolikhina A (2010) Effect of different cation saturations on the sorption and mineralization of the hydrophobic organic compounds nonylphenol and phenanthrene in soils. In: Proceedings of the 19th World Congress of Soil Science: soil solutions for a changing world, Brisbane

    Google Scholar 

  • Muratova A, Hübner T, Tischer S, Turkovskaya O, Möder M, Kuschk P (2003) Plant–rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int J Phytoremediat 5(2):137–151

    Article  CAS  Google Scholar 

  • Nam K, Alexander M (2001) Relationship between biodegradation rate and percentage of a compound that becomes sequestered in soil. Soil Biol Biochem 33:787–792

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ Pollut 108:19–43

    Article  CAS  PubMed  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Pignatello J (2012) Dynamic interactions of natural organic matter and organic compounds. J Soils Sediments 12:1241–1256

    Article  CAS  Google Scholar 

  • Polubesova T, Sherman-Nakache M, Chefetz B (2007) Binding of pyrene to hydrophobic fractions of dissolved organic matter: effect of polyvalent metal complexation. Environ Sci Technol 41:5389–5394

    Article  CAS  PubMed  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP Sites. J Soil Contam 7:467–480

    Article  CAS  Google Scholar 

  • Robinson BH, Green SR, Mills TM, Clothier BE, van der Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, van den Dijssel C (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Aust J Soil Res 41:599–611

    Article  Google Scholar 

  • Robinson BH, Green SR, Chancerel B, Mills TM, Clothier BE (2007) Poplar for the phytomanagement of boron contaminated sites. Environ Pollut 150:225–233

    Article  CAS  PubMed  Google Scholar 

  • Scheel T, Dörfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74

    CAS  Google Scholar 

  • Scheel T, Haumaier L, Ellerbrock RH, Rühlmann J, Kalbitz K (2008) Properties of organic matter precipitated from acidic forest soil solutions. Org Geochem 39:1439–1453

    Article  CAS  Google Scholar 

  • Schnitzer M (1991) Soil organic matter-the next 75 years. Soil Sci 151(1):41–58

    Article  Google Scholar 

  • Scow KM, Johnson CR (1996) Effect of sorption on biodegradation of soil pollutants. Adv Agro 58:1–56

    Article  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228–231

    Article  Google Scholar 

  • Shchegolikhina A, Marschner B (2013) Effects of sterile storage, cation saturation and substrate additions on the degradability and extractability of nonylphenol and phenanthrene in soil. Chemosphere 93(9):2195–2202

    Article  CAS  PubMed  Google Scholar 

  • Shchegolikhina A, Schulz S, Marschner B (2012) Interacting effects of cation saturation and drying, freezing, or aging on the extractability of nonylphenol and phenanthrene from a sandy soil. J Soils Sediments 12(8):1280–1291

    Article  CAS  Google Scholar 

  • Singleton DR, Hendrix PF, Coleman DC, Whitman WB (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35(12):1547–1555

    Article  CAS  Google Scholar 

  • Sinha RK, Herat S, Tandon PK (2007) Phytoremediation: role of plants in contaminated site management. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 315–330

    Chapter  Google Scholar 

  • Su XM, Liu YD, Hashmi MZ, Ding LX, Shen CF (2015) Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb Biotechnol 8(3):569–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Hashmi MZ, Zeng B, Yang J, Shen C (2015) Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chem Eng J 279:673–680

    Article  CAS  Google Scholar 

  • Thakur IS (2008) Xenobiotics: pollutants and their degradation-methane, benzene, pesticides, bioabsorption of metals. School of Environmental Sciences, Jawaharal Nehru University, New Delhi

    Google Scholar 

  • Thakur IS (2011) Environmental biotechnology: basic concept and applications. IK International, New Delhi

    Google Scholar 

  • Van der Lelie D, Schwitzbuebel JP, Glass DJ, Vangronsveld J, Baker A (2001) Assessing phytoremediation’s progress in the United States and Europe. Environ Sci Technol 35:447–452

    Google Scholar 

  • Varsha YM, Naga Deepthi CH, Chenna S (2011) An emphasis on xenobiotic degradation in environmental cleanup. J Bioremed Biodegrad S 11:1–10

    Google Scholar 

  • Yuan GS, Xing BS (2001) Effects of metal cations on sorption and desorption of organic compounds in humic acids. Soil Sci 166:107–115

    Article  CAS  Google Scholar 

  • Zhang J, Li Z, Ge G, Sun W, Liang Y, Wu L (2009) Impacts of soil organic matter, pH and exogenous copper on sorption behavior of norfloxacin in three soils. J Environ Sci 21:632–640

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Balabanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Balabanova, B. (2017). Bioavailability/Phytostabilization of Xenobiotics in Soil. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_15

Download citation

Publish with us

Policies and ethics