Skip to main content

Energy-Aware Cooperative MAC with Uncoordinated Group Relays

  • Chapter
  • First Online:
  • 418 Accesses

Part of the book series: Wireless Networks ((WN))

Abstract

In this chapter, we extend the single S-D pair cooperation scenario considered in Chap. 3 to a new framework where multiple S-D pairs share a group of relays with energy constraint. To support the fast-growing multimedia services in a green manner, we introduce an energy-aware distributed cooperation scheme based on the backoff timer. The theoretical performance bounds of the proposed strategy are derived with respect to the collision probability and the transmission success probability. The numerical and simulation results show that the proposed strategy outperforms a probability-based uncoordinated strategy in terms of average packet delay, delay outage probability, and energy consumption. Further, we investigate the scalability of our proposed strategy and find it can be deployed in a large-scale network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 24 (3), 659–672 (2006)

    Article  Google Scholar 

  2. Carofiglio, G., Chiasserini, C., Garetto, M., Leonardi, E.: Route stability in MANETs under the random direction mobility model. IEEE Trans. Mobile Comput. 8 (9), 1167–1179 (2009)

    Article  Google Scholar 

  3. Chen, Z., Gokeda, G., Yu, Y.: Introduction to Direction-of-Arrival estimation. Artech House, Boston (2010)

    Google Scholar 

  4. Cheng, Y., Ling, X., Cai, L., Song, W., Zhuang, W., Shen, X., Leon-Garcia, A.: Statistical multiplexing, admission region, and contention window optimization in multiclass wireless LANs. ACM Wirel. Netw. 15 (1), 73–86 (2009)

    Article  Google Scholar 

  5. Du, Q., Zhang, X.: QoS-aware Base-station selections for distributed MIMO links in broadband wireless networks. IEEE J. Sel. Areas Commun. 29 (6), 1123–1138 (2011)

    Article  Google Scholar 

  6. Jin, A., Song, W., Ju, P., Zhou, D.: Energy-aware cooperation strategy with uncoordinated group relays for delay-sensitive services. IEEE Trans. Veh. Technol. 63 (5), 2104–2114 (2014)

    Article  Google Scholar 

  7. Ju, P., Song, W., Zhou, D.: Survey on cooperative medium access control protocols. IET Commun. 7 (9), 893–902 (2013)

    Article  Google Scholar 

  8. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50 (12), 3062–3080 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Y., Wang, P., Niyato, D., Zhuang, W.: A dynamic relay selection scheme for mobile users in wireless relay networks. In: Proceedings of IEEE INFOCOM Workshop (2011)

    Book  Google Scholar 

  10. Liu, P., Tao, Z., Narayanan, S., Korakis, T., Panwar, S.S.: CoopMAC: a cooperative MAC for wireless LANs. IEEE J. Sel. Areas Commun. 25 (2), 340–354 (2007)

    Article  Google Scholar 

  11. Mao, G., Fidan, B., Anderson, B.: Wireless sensor network localization techniques. Comput. Netw. 51, 2529–2553 (2007)

    Article  MATH  Google Scholar 

  12. Nain, P., Towsley, D., Liu, B., Liu, Z.: Properties of random direction models. In: Proceedings of IEEE INFOCOM, vol. 3, pp. 1897–1907 (2005)

    Google Scholar 

  13. Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42 (10), 74–80 (2004)

    Article  Google Scholar 

  14. Ribeiro, A., Sidiropoulos, N.D., Giannakis, G.B.: Optimal distributed stochastic routing algorithms for wireless multihop networks. IEEE Trans. Wirel. Commun. 7 (11), 4261–4272 (2008)

    Article  Google Scholar 

  15. Shan, H., Cheng, H., Zhuang, W.: Cross-layer cooperative MAC protocol in distributed wireless networks. IEEE Trans. Wirel. Commun. 10 (8), 2603–2615 (2011)

    Article  Google Scholar 

  16. Song, W., Zhuang, W.: Performance analysis and enhancement of cooperative retransmission strategy for delay-sensitive real-time services. In: Proceedings of IEEE GLOBECOM (2009)

    Book  Google Scholar 

  17. Xiong, L., Libman, L., Mao, G.: Uncoordinated cooperative communications in highly dynamic wireless networks. IEEE J. Sel. Areas Commun. 30 (2), 280–288 (2012)

    Article  Google Scholar 

  18. Zhai, C., Zhang, W., Mao, G.: Uncoordinated cooperative communications with spatially random relays. IEEE Trans. Wirel. Commun. 11 (9), 3126–3135 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix A: Proof of (4.17)

According to (4.14), when θ > c, we have

$$\displaystyle{ I_{c}\ =\ N(N - 1)(I_{c_{1}} + I_{c_{2}} + I_{c_{3}}) }$$
(4.27)

where \(I_{c_{1}}\), \(I_{c_{2}}\) and \(I_{c_{3}}\) are given by

$$\displaystyle\begin{array}{rcl} I_{c_{1}}& =& \int _{c}^{\theta } \frac{t} {\theta (1-\theta )}\bigg[1 - \frac{t^{2}/2} {\theta (1-\theta )}\bigg]^{N-2}\ \frac{(t - c)^{2}/2} {\theta (1-\theta )} \mathrm{d}t{}\end{array}$$
(4.28)
$$\displaystyle\begin{array}{rcl} I_{c_{2}} =\int _{ \theta }^{1-\theta } \frac{1} {1-\theta }\bigg[1 -\frac{t -\theta /2} {1-\theta } \bigg]^{N-2}\ \frac{t - c -\theta /2} {1-\theta } \mathrm{d}t& &{}\end{array}$$
(4.29)
$$\displaystyle\begin{array}{rcl} I_{c_{3}} =\int _{ 1-\theta }^{1}\frac{1 - t} {\theta (1-\theta )}\bigg[\frac{(1 - t)^{2}} {2\theta (1-\theta )} \bigg]^{N-2}\bigg[1 -\frac{(1 - t + c)^{2}} {2\theta (1-\theta )} \bigg]\mathrm{d}t.& &{}\end{array}$$
(4.30)

As a closed-form expression is not tractable for \(I_{c_{1}}\), we take t ≤ θ and have

$$\displaystyle{ \begin{array}{rl} I_{c_{1}} & \ \geq \ \int _{c}^{\theta } \frac{t} {\theta (1-\theta )}\ \bigg[1 - \frac{\theta ^{2}/2} {\theta (1-\theta )}\bigg]^{N-2}\ \frac{(t-c)^{2}/2} {\theta (1-\theta )} \mathrm{d}t \\ &\ =\ \Big( \frac{1} {1-\theta }\Big)^{N}\bigg(1 -\frac{3} {2}\theta \Big)^{N-2}\Big(\theta -c\Big)^{3}\Big(\frac{1} {8\theta } + \frac{c} {24\theta ^{2}} \Big). \end{array} }$$
(4.31)

The closed-form expressions of \(I_{c_{2}}\) and \(I_{c_{3}}\) can be obtained as

$$\displaystyle\begin{array}{rcl} I_{c_{2}}& =& \Big( \frac{1} {1-\theta }\Big)^{N}\Bigg\{\frac{1 -\theta -c} {N - 1} \bigg[\Big(1 -\frac{3} {2}\theta \Big)^{N-1} -\Big ( \frac{\theta } {2}\Big)^{N-1}\bigg] \\ & & \quad - \frac{1} {N}\bigg[\Big(1 -\frac{3} {2}\theta \Big)^{N} -\Big ( \frac{\theta } {2}\Big)^{N}\bigg]\Bigg\} {}\end{array}$$
(4.32)
$$\displaystyle\begin{array}{rcl} I_{c_{3}}& =& \Big( \frac{\theta /2} {1-\theta }\Big)^{N}\Big(\frac{2} {\theta } \Big)\bigg[\frac{2(1-\theta ) - c^{2}/\theta } {2N - 2} - \frac{2c} {2N - 1} - \frac{\theta } {2N}\bigg].{}\end{array}$$
(4.33)

The last three equations conclude the proof to (4.17).

Appendix B: Proof of (4.25)

According to (4.2), we obtain the transmission success probability over the relay-to-destination channel with α = 2 as

$$\displaystyle{ P_{RD}\ =\ e^{-\phi d^{2} } }$$
(4.34)

where ϕ = T 0 N 0P 0. Given the PDF of d in (4.10), we derive the CDF of P RD by

$$\displaystyle{ \begin{array}{rl} \Pr \{P_{RD} \leq p\}& =\Pr \{ e^{-\phi d^{2} } \leq p\} = 1 -\Pr \bigg\{ d \leq \sqrt{-\frac{\ln p} {\phi }} \ \bigg\} \\ & = 1 -\int _{0}^{\sqrt{-\frac{1} {\phi } \ln p}}f(x)\mathrm{d}x = 1 - \frac{d^{2}} {L^{2}} \Bigg\vert _{0}^{\sqrt{-\frac{1} {\phi } \ln p}} \\ & = 1 + \frac{P_{0}} {N_{0}T_{0}L^{2}} \ln p. \end{array} }$$

Thus, it is easy to show that the probability that a relay has the maximum transmission success probability over the relay-to-destination channel among N candidates is given by (4.25).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Song, W., Ju, P., Jin, AL. (2017). Energy-Aware Cooperative MAC with Uncoordinated Group Relays. In: Protocol Design and Analysis for Cooperative Wireless Networks. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-47726-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47726-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47725-1

  • Online ISBN: 978-3-319-47726-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics