Skip to main content

Energy-Efficient Uncoordinated Cooperative MAC with Uncertain Relay Distribution Intensity

  • Chapter
  • First Online:
Protocol Design and Analysis for Cooperative Wireless Networks

Part of the book series: Wireless Networks ((WN))

  • 421 Accesses

Abstract

As a promising technique, cooperative communications make use of the broadcasting nature of wireless medium to facilitate data transmission, and thereby reduce energy consumption. However, in many studies on wireless cooperative diversity, it is often assumed that the number of relays or the relay distribution intensity is known a priori. In this chapter, we relax such assumption and propose an algorithm to estimate the relay intensity for a backoff-based cooperative scheme, where the relays are distributed as a homogeneous Poisson point processĀ (PPP). It is proved that the algorithm can converge to an optimal solution with the minimum estimation error. Based on the estimated relay intensity, we further investigate a distributed energy saving strategy, which selectively turns off some relays to reduce energy consumption while maintaining the required transmission success probability. The performance of the proposed cooperative scheme is analytically evaluated with respect to the collision probability. The numerical and simulation results demonstrate the high accuracy and efficiency of the intensity estimation algorithm and also validate the theoretical analysis. Moreover, the proposed cooperative scheme exhibits significant energy saving and satisfactory transmission performance, which offers a good match to accommodate green communications in wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 24 (3), 659ā€“672 (2006)

    ArticleĀ  Google ScholarĀ 

  2. Carofiglio, G., Chiasserini, C., Garetto, M., Leonardi, E.: Route stability in MANETs under the random direction mobility model. IEEE Trans. Mobile Comput. 8 (9), 1167ā€“1179 (2009)

    ArticleĀ  Google ScholarĀ 

  3. Chen, Z., Gokeda, G., Yu, Y.: Introduction to Direction-of-Arrival Estimation. Artech House, Boston (2010)

    Google ScholarĀ 

  4. Du, Q., Zhang, X.: QoS-aware base-station selections for distributed MIMO links in broadband wireless networks. IEEE J. Sel. Areas Commun. 29 (6), 1123ā€“1138 (2011)

    ArticleĀ  Google ScholarĀ 

  5. Ganti, R.K., Haenggi, M.: Analysis of uncoordinated opportunistic two-hop wireless ad hoc systems. In: Proceedings of IEEE International Symposium on Information Theory, Seoul, pp.Ā 1020ā€“1024 (2009)

    Google ScholarĀ 

  6. Jin, A., Song, W., Ju, P., Zhou, D.: An energy-efficient uncoordinated cooperative scheme with uncertain relay distribution intensity. IEEE Trans. Veh. Technol. 64 (2), 677ā€“688 (2015)

    ArticleĀ  Google ScholarĀ 

  7. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf Theory 50 (12), 3062ā€“3080 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Li, Y., Wang, P., Niyato, D., Zhuang, W.: A hierarchical framework of dynamic relay selection for mobile users and profit maximization for service providers in wireless relay networks. Wirel. Commun. Mobile Comput. 14 (12), 1113ā€“1126 (2014)

    ArticleĀ  Google ScholarĀ 

  9. Liu, P., Tao, Z., Narayanan, S., Korakis, T., Panwar, S.S.: CoopMAC: a cooperative MAC for wireless LANs. IEEE J. Sel. Areas Commun. 25 (2), 340ā€“354 (2007)

    ArticleĀ  Google ScholarĀ 

  10. Mao, G., Fidan, B., Anderson, B.: Wireless sensor network localization techniques. Comput. Netw. 51, 2529ā€“2553 (2007)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  11. Narayanan, S., Panwar, S.S.: To forward or not to forward ā€“ that is the question. Wirel. Pers. Commun. 43 (1), 65ā€“87 (2007)

    ArticleĀ  Google ScholarĀ 

  12. Ribeiro, A., Sidiropoulos, N.D., Giannakis, G.B.: Optimal distributed stochastic routing algorithms for wireless multihop networks. IEEE Trans. Wirel. Commun. 7 (11), 4261ā€“4272 (2008)

    ArticleĀ  Google ScholarĀ 

  13. Shan, H., Cheng, H., Zhuang, W.: Cross-layer cooperative MAC protocol in distributed wireless networks. IEEE Trans. Wirel. Commun. 10 (8), 2603ā€“2615 (2011)

    ArticleĀ  Google ScholarĀ 

  14. Song, W., Zhuang, W.: Performance analysis and enhancement of cooperative retransmission strategy for delay-sensitive real-time services. In: Proceedings of IEEE GLOBECOM, Honolulu (2009)

    BookĀ  Google ScholarĀ 

  15. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. John Wiley and Sons, Chichester (1996)

    MATHĀ  Google ScholarĀ 

  16. Xiong, L., Libman, L., Mao, G.: Uncoordinated cooperative communications in highly dynamic wireless networks. IEEE J. Sel. Areas Commun. 30 (2), 280ā€“288 (2012)

    ArticleĀ  Google ScholarĀ 

  17. Zhai, C., Zhang, W., Mao, G.: Uncoordinated cooperative communications with spatially random relays. IEEE Trans. Wirel. Commun. 11 (9), 3126ā€“3135 (2012)

    ArticleĀ  Google ScholarĀ 

  18. Zorzi, M., Rao, R.R.: Geographic random forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance. IEEE Trans. Mobile Comput. 2 (4), 349ā€“365 (2003)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Appendices

AppendixĀ A: Extended Proof of LemmaĀ 3.2 with N Relays

Let p 1,ā€‰p 2,ā€‰ā€¦,ā€‰p N be the probabilities that N relays correctly receive a packet from S, and Ī¶ 1,ā€‰Ī¶ 2,ā€‰ā€¦,ā€‰Ī¶ N be the active probabilities of the N relays, respectively. Any unknown Ī¶ n (2ā€‰ā‰¤ā€‰nā€‰ā‰¤ā€‰N) can be determined according to known Ī¶ 1,ā€‰ā€¦,ā€‰Ī¶ nāˆ’1. Thus, Ī¶ 1,ā€‰Ī¶ 2,ā€‰ā€¦,ā€‰Ī¶ N can be obtained sequentially so as to minimize the overall energy consumption of these N relays.

The average energy consumption of a packet transmission is given by

$$\displaystyle{E = \mathcal{P}_{1} \cdot E_{t} + \mathcal{P}_{2} \cdot E_{r} + \mathcal{P}_{3} \cdot E}$$

where \(\mathcal{P}_{1}\) is the probability that at least one active relay correctly overhears the packet from the source, \(\mathcal{P}_{2}\) is the average number of relays that are active during the packet transmission, and \(\mathcal{P}_{3}\) is the probability that none of the active relays successfully overhears the packet from the source. For N relays, we have

$$\displaystyle{\mathcal{P}_{1} = 1 -\prod _{i=1}^{N}(1 - p_{ i}\zeta _{i}),\quad \mathcal{P}_{2} =\sum _{ i=1}^{N}\zeta _{ i},\quad \mathcal{P}_{3} = 1 -\mathcal{P}_{1}.}$$

Thus, we have

$$\displaystyle{ E = E_{t} + \frac{\zeta _{1} +\zeta _{2} + \cdots +\zeta _{N}} {1 - (1 - p_{1}\zeta _{1})(1 - p_{2}\zeta _{2})\cdots (1 - p_{N}\zeta _{N})} \cdot E_{r}. }$$

Similar toĀ (3.21), (3.22), and (3.23), it can be easily inferred that, given known Ī¶ 1,ā€‰ā€¦,ā€‰Ī¶ Nāˆ’1, the active probabilityĀ Ī¶ N should be either 0 or 1, so as to minimize the average energy consumption E. The setting of 0 or 1 to Ī¶ N depends on the successful receiving probability p N and the status of the other relays.

AppendixĀ B: Proof ofĀ (3.34) andĀ (3.35)

The conditional collision probability P c is given by

$$\displaystyle{ \begin{array}{rl} P_{c}& =\mathrm{ P}[r_{2} \leq r_{1} + w] = 1 -\mathrm{ P}[r_{2} > r_{1} + w] = 1 -\int _{0}^{L_{0}-w}\int _{r_{ 1}+w}^{L_{0}}g(r_{ 1},r_{2})\mathrm{d}r_{2}\mathrm{d}r_{1} \\ & = 1 - \frac{1} {P_{2^{+}}} \int _{0}^{L_{0}-w}\Bigg\{\Big[2\lambda r_{1}e^{-K(L^{2}+r_{ 1}^{2}) }\int _{0}^{\arccos (\frac{r_{1}} {L} )}e^{2KLr_{1}\cos \theta }\mathrm{d}\theta \Big] \\ &\ \ \qquad \qquad \int _{r_{1}+w}^{L_{0}}\Big[e^{-\varLambda _{r_{2}}}\Big(2\lambda r_{2}e^{-K(L^{2}+r_{ 2}^{2}) }\int _{0}^{\arccos (\frac{r_{2}} {L} )}e^{2KLr_{2}\cos \theta }\mathrm{d}\theta \Big)\Big]\mathrm{d}r_{2}\Bigg\}\mathrm{d}r_{1} \\ & = 1 - \frac{1} {P_{2^{+}}} \int _{0}^{L_{0}-w}\Bigg\{\Big[2\lambda r_{1}e^{-K(L^{2}+r_{ 1}^{2}) }\int _{0}^{\arccos (\frac{r_{1}} {L} )}e^{2KLr_{1}\cos \theta }\mathrm{d}\theta \Big] \\ &\ \ \ \ \qquad \qquad \qquad \qquad \cdot \Big (e^{-\varLambda _{r_{1}}} \cdot e^{-\varLambda _{\varDelta w}} - e^{-\varLambda _{L_{0}}}\Big)\Bigg\}\mathrm{d}r_{1} \end{array} }$$
$$\displaystyle\begin{array}{rcl} \phantom{P_{c}}& =& 1 - \frac{1} {P_{2^{+}}} \int _{0}^{\varLambda _{L_{0}-w} }\Big(e^{-\varLambda _{r_{1}} } \cdot e^{-\varLambda _{\varDelta w} } - e^{-\varLambda _{L_{0}} }\Big)\mathrm{d}\varLambda _{r_{1}} \\ & =& 1 + \frac{\varLambda _{L_{0}-w} \cdot e^{-\varLambda _{L_{0}}}} {P_{2^{+}}} - \frac{1} {P_{2^{+}}} \int _{0}^{\varLambda _{L_{0}-w} }e^{-\varLambda _{r_{1}} } \cdot e^{-\varLambda _{\varDelta w} }\mathrm{d}\varLambda _{r_{1}}.{}\end{array}$$
(3.37)

Therefore,Ā (3.34) is proved.

Since Ī› Ī” w ā€‰ā‰¤ā€‰ĪØ, according toĀ (3.6), we have

$$\displaystyle{ \begin{array}{rl} P_{c}& \leq 1 + \frac{\varLambda _{L_{0}-w}\cdot e^{-\varLambda _{L_{0}} }} {P_{2^{+}}} - \frac{1} {P_{2^{+}}} \int _{0}^{\varLambda _{L_{0}-w}}e^{-\varLambda _{r_{1}}} \cdot e^{-\varPsi }\mathrm{d}\varLambda _{r_{ 1}} \\ & = 1 + \frac{\varLambda _{L_{0}-w}\cdot e^{-\varLambda _{L_{0}} }} {P_{2^{+}}} - \frac{e^{-\varPsi }} {P_{2^{+}}} \int _{0}^{\varLambda _{L_{0}-w}}e^{-\varLambda _{r_{1}}}\mathrm{d}\varLambda _{r_{ 1}} \\ & = 1 + \frac{\varLambda _{L_{0}-w}\cdot e^{-\varLambda _{L_{0}} }} {P_{2^{+}}} - \frac{e^{-\varPsi }} {P_{2^{+}}} \Big[\big(-e^{-\varLambda _{r_{1}}}\big)\big\vert _{0}^{\varLambda _{L_{0}-w}}\Big] \\ & = 1 + \frac{\varLambda _{L_{0}-w}\cdot e^{-\varLambda _{L_{0}} }} {P_{2^{+}}} - \frac{e^{-\varPsi }} {P_{2^{+}}} \big(1 - e^{-\varLambda _{L_{0}-w}}\big) \end{array} }$$
(3.38)

which gives the result inĀ (3.35).

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Song, W., Ju, P., Jin, AL. (2017). Energy-Efficient Uncoordinated Cooperative MAC with Uncertain Relay Distribution Intensity. In: Protocol Design and Analysis for Cooperative Wireless Networks. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-47726-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47726-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47725-1

  • Online ISBN: 978-3-319-47726-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics