Skip to main content

Biologics for Adult Lumbar Scoliosis

  • Chapter
  • First Online:
Adult Lumbar Scoliosis

Abstract

Adult scoliosis, arising either as a sequelae of untreated adolescent idiopathic scoliosis or as a de novo degenerative deformity, has been estimated in as much as 68 % of adults over the age of 60 [1]. Anwar et al. further reported that adult lumbar scoliosis in particular was significantly underreported, particularly in scoliotic curves <20° [2]. Many patients with adult lumbar scoliosis can be managed nonoperatively. However, in patients with subsequent neurological deficits related to stenosis, significant sagittal imbalance, or chronic pain as a result of the underlying deformity, surgical correction with or without neurologic decompression can offer relief and return to activities of daily living. While the clinical presentation of adult lumbar scoliosis is variable, the disease presents a significant structural and mechanical challenge. Depending on the patients’ symptoms, the surgical goals are to provide neurologic decompression, correct scoliosis curve magnitude, reduce sagittal imbalance, and maintain long-term stability of the construct for those patients with neurological and structural deficits [3, 4]. Operative indications for degenerative lumbar scoliosis are equally as variable as the clinical presentation, though lumbar curves with >30–40° are commonly considered for operative treatment [3, 5]. The Lenke-Silva Treatment Levels I–VI matrix offers distinct procedural options for lumbar scoliosis indications, which range from decompression only to decompression with instrumentation utilizing varying surgical approaches, construct lengths, and need for osteotomy inclusion [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwab FJ, Dubey A, Gamez L, et al. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976). 2005;30(9):1082–5.

    Article  Google Scholar 

  2. Anwar Z, Zan E, Gujar SK, et al. Adult lumbar scoliosis: underreported on lumbar MR scans. AJNR Am J Neuroradiol. 2010;31(5):832–7.

    Article  CAS  PubMed  Google Scholar 

  3. Silva FE, Lenke LG. Adult degenerative scoliosis: evaluation and management. Neurosurg Focus. 2010;28(3):E1.

    Article  PubMed  Google Scholar 

  4. Kim YB, Lenke LG, Kim YJ, Kim Y-W, Bridwell KH, Stobbs G. Surgical treatment of adult scoliosis: is anterior apical release and fusion necessary for the lumbar curve? Spine (Phila Pa 1976). 2008;33(10):1125–32.

    Article  Google Scholar 

  5. Pritchett JW, Bortel DT. Degenerative symptomatic lumbar scoliosis. Spine (Phila Pa 1976). 1993;18(6):700–3.

    Article  CAS  Google Scholar 

  6. Cornell CN. Osteobiologics. Bull Hosp Jt Dis. 2004;62(1–2):13–7.

    PubMed  Google Scholar 

  7. Kim HJ, Buchowski JM, Zebala LP, Dickson DD, Koester L, Bridwell KH. RhBMP-2 is superior to iliac crest bone graft for long fusions to the sacrum in adult spinal deformity: 4- to 14-year follow-up. Spine (Phila Pa 1976). 2013;38(14):1209–15.

    Article  Google Scholar 

  8. Rahman RK, Buchowski JM, Stephens B, Dorward IG, Koester LA, KH B. Comparison of TLIF with rhBMP-2 versus no TLIF and higher posterolateral rhBMP-2 dose at L5-S1 for long fusions to the sacrum with sacropelvic fixation in patients with primary adult deformity. Spine (Phila Pa 1976). 2013;38(26):2264–71.

    Article  Google Scholar 

  9. Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. Eur Spine J. 2013;22(6):1423–35.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vanderpool DW, James JI, Wynne-Davies R. Scoliosis in the elderly. J Bone Joint Surg Am. 1969;51(3):446–55.

    Article  CAS  PubMed  Google Scholar 

  11. Robin GC, Span Y, Steinberg R, Makin M, Menczel J. Scoliosis in the elderly: a follow-up study. Spine (Phila Pa 1976). 1982;7(4):355–9.

    Article  CAS  Google Scholar 

  12. Thevenon A, Pollez B, Cantegrit F, Tison-Muchery F, Marchandise X, Duquesnoy B. Relationship between kyphosis, scoliosis, and osteoporosis in the elderly population. Spine (Phila Pa 1976). 1987;12(8):744–5.

    Article  CAS  Google Scholar 

  13. Ohtori S, Suzuki M, Koshi T, et al. Single-level instrumented posterolateral fusion of the lumbar spine with a local bone graft versus an iliac crest bone graft: a prospective, randomized study with a 2-year follow-up. Eur Spine J. 2011;20(4):635–9.

    Article  PubMed  Google Scholar 

  14. Niu C-C, Tsai T-T, Fu T-S, Lai P-L, Chen L-H, Chen W-J. A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine (Phila Pa 1976). 2009;34(25):2715–9.

    Article  Google Scholar 

  15. Johnson RG. Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine (Phila Pa 1976). 2014;39(9):695–700.

    Article  Google Scholar 

  16. Thalgott JS, Fogarty ME, Giuffre JM, Christenson SD, Epstein AK, Aprill C. A prospective, randomized, blinded, single-site study to evaluate the clinical and radiographic differences between frozen and freeze-dried allograft when used as part of a circumferential anterior lumbar interbody fusion procedure. Spine (Phila Pa 1976). 2009;34(12):1251–6.

    Article  Google Scholar 

  17. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (Phila Pa 1976). 2012;37(12):1083–91.

    Article  Google Scholar 

  18. Korovessis P, Koureas G, Zacharatos S, Papazisis Z, Lambiris E. Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J. 2005;14(7):630–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hee HT, Majd ME, Holt RT, Myers L. Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2003;12(4):400–7.

    Article  Google Scholar 

  20. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15(5):337–49.

    Article  PubMed  Google Scholar 

  21. Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine (Phila Pa 1976). 2006;31(20):2329–36.

    Article  Google Scholar 

  22. Fu L, Chang MS, Crandall DG, Revella J. Comparative analysis of clinical outcomes and complications in patients with degenerative scoliosis undergoing primary versus revision surgery. Spine (Phila Pa 1976). 2014;39(10):805–11.

    Article  Google Scholar 

  23. Cho K-J, Suk S-I, Park S-R, et al. Short fusion versus long fusion for degenerative lumbar scoliosis. Eur Spine J. 2008;17(5):650–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weistroffer JK, Perra JH, Lonstein JE, et al. Complications in long fusions to the sacrum for adult scoliosis: minimum five-year analysis of fifty patients. Spine (Phila Pa 1976). 2008;33(13):1478–83.

    Article  Google Scholar 

  25. Crandall DG, Revella J. Transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion as an adjunct to posterior instrumented correction of degenerative lumbar scoliosis: three year clinical and radiographic outcomes. Spine (Phila Pa 1976). 2009;34(20):2126–33.

    Article  Google Scholar 

  26. Brown CR, Boden SD. Fracture repair and bone grafting. Princ Orthop. 2011;9:13–22.

    Google Scholar 

  27. Schwab FJ, Dubey A, Pagala M, Gamez L, Farcy JP. Adult scoliosis: a health assessment analysis by SF-36. Spine (Phila Pa 1976). 2003;28(6):602–6.

    Google Scholar 

  28. Fischer CR, Ducoffe AR, Errico TJ. Posterior lumbar fusion: choice of approach and adjunct techniques. J Am Acad Orthop Surg. 2014;22(8):503–11.

    Article  PubMed  Google Scholar 

  29. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84-A(5):716–20.

    Article  PubMed  Google Scholar 

  30. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.

    Article  Google Scholar 

  31. Schwartz CE, Martha JF, Kowalski P, et al. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. Health Qual Life Outcomes. 2009;7:49.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am. 1999;30(4):685–98.

    Article  CAS  PubMed  Google Scholar 

  33. Zdeblick TA. A prospective, randomized study of lumbar fusion: preliminary results. Spine (Phila Pa 1976). 1993;18(8):983–91.

    Article  CAS  Google Scholar 

  34. Vaccaro AR, Whang PG, Patel T, et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J. 2008;8(3):457–65.

    Article  PubMed  Google Scholar 

  35. Herkowitz HN, Kurz LT. Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. J Bone Joint Surg Am. 1991;73(6):802–8.

    Article  CAS  PubMed  Google Scholar 

  36. Bono CM, Lee CK. Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine (Phila Pa 1976). 2004;29(4):455–63. discussion Z5

    Article  Google Scholar 

  37. Dimar JR, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Two-year fusion and clinical outcomes in 224 patients treated with a single-level instrumented posterolateral fusion with iliac crest bone graft. Spine J. 2009;9(11):880–5.

    Article  PubMed  Google Scholar 

  38. Dimar JR, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am. 2009;91(6):1377–86.

    Article  PubMed  Google Scholar 

  39. West JL, Bradford DS, Ogilvie JW. Results of spinal arthrodesis with pedicle screw-plate fixation. J Bone Joint Surg Am. 1991;73(8):1179–84.

    Article  PubMed  Google Scholar 

  40. Horton WC, Brown CW, Bridwell KH, Glassman SD, Suk S-I, Cha CW. Is there an optimal patient stance for obtaining a lateral 36″ radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976). 2005;30(4):427–33.

    Article  Google Scholar 

  41. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976). 1995;20(9):1055–60.

    Article  CAS  Google Scholar 

  42. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  CAS  PubMed  Google Scholar 

  43. Laurie SW, Kaban LB, Mulliken JB, Murray JE. Donor-site morbidity after harvesting rib and iliac bone. Plast Reconstr Surg. 1984;73(6):933–8.

    Article  CAS  PubMed  Google Scholar 

  44. Silber JS, Anderson DG, Daffner SD, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003;28(2):134–9.

    Article  Google Scholar 

  45. Sasso RC, LeHuec JC, Shaffrey C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech. 2005;18(Suppl):S77–81.

    Article  PubMed  Google Scholar 

  46. Armaghani SJ, Even JL, Zern EK, Braly BA, Kang JD, Devin CJ. The evaluation of donor site pain after harvest of tricortical anterior iliac crest bone graft for spinal surgery: a prospective study. Spine (Phila Pa 1976). 2016;41(4):E191–6.

    Article  Google Scholar 

  47. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71(4):677–80.

    CAS  PubMed  Google Scholar 

  48. Delawi D, Dhert WJA, Castelein RM, Verbout AJ, Oner FC. The incidence of donor site pain after bone graft harvesting from the posterior iliac crest may be overestimated: a study on spine fracture patients. Spine (Phila Pa 1976). 2007;32(17):1865–8.

    Article  Google Scholar 

  49. Radcliff K, Hwang R, Hilibrand A, et al. The effect of iliac crest autograft on the outcome of fusion in the setting of degenerative spondylolisthesis: a subgroup analysis of the Spine Patient Outcomes Research Trial (SPORT). J Bone Joint Surg Am. 2012;94(18):1685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hu SS. Commentary: iliac crest bone graft: are the complications overrated? Spine J. 2011;11(6):538–9.

    Article  PubMed  Google Scholar 

  51. Howard JM, Glassman SD, Carreon LY. Posterior iliac crest pain after posterolateral fusion with or without iliac crest graft harvest. Spine J. 2011;11(6):534–7.

    Article  PubMed  Google Scholar 

  52. Hsu C-J, Chou W-Y, Teng H-P, Chang W-N, Chou Y-J. Coralline hydroxyapatite and laminectomy-derived bone as adjuvant graft material for lumbar posterolateral fusion. J Neurosurg Spine. 2005;3(4):271–5.

    Article  PubMed  Google Scholar 

  53. Carragee EJ, Comer GC, Smith MW. Local bone graft harvesting and volumes in posterolateral lumbar fusion: a technical report. Spine J. 2011;11(6):540–4.

    Article  PubMed  Google Scholar 

  54. Kho VK-S, Chen W-C. Posterolateral fusion using laminectomy bone chips in the treatment of lumbar spondylolisthesis. Int Orthop. 2008;32(1):115–9.

    Article  PubMed  Google Scholar 

  55. Lee S-C, Chen J-F, Wu C-T, Lee S-T. In situ local autograft for instrumented lower lumbar or lumbosacral posterolateral fusion. J Clin Neurosci. 2009;16(1):37–43.

    Article  PubMed  Google Scholar 

  56. Ito Z, Matsuyama Y, Sakai Y, et al. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine (Phila Pa 1976). 2010;35(21):E1101–5.

    Article  Google Scholar 

  57. Violas P, Chapuis M, Bracq H. Local autograft bone in the surgical management of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29(2):189–92.

    Article  Google Scholar 

  58. Inage K, Ohtori S, Koshi T, et al. One, two-, and three-level instrumented posterolateral fusion of the lumbar spine with a local bone graft: a prospective study with a 2-year follow-up. Spine (Phila Pa 1976). 2011;36(17):1392–6.

    Article  Google Scholar 

  59. Hustedt JW, Jegede KA, Badrinath R, Bohl DD, Blizzard DJ, Grauer JN. Optimal aspiration volume of vertebral bone marrow for use in spinal fusion. Spine J. 2013;13(10):1217–22.

    Article  PubMed  Google Scholar 

  60. Kitchel SH, Wang MY, Lauryssen CL. Techniques for aspirating bone marrow for use in spinal surgery. Neurosurgery. 2005;57(4 Suppl):286–9.

    PubMed  Google Scholar 

  61. Vaz K, Verma K, Protopsaltis T, Schwab F, Lonner B, Errico T. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J. 2010;4(3):75–86.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Carter JD, Swearingen AB, Chaput CD, Rahm MD. Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate. Spine J. 2009;9(6):434–8.

    Article  PubMed  Google Scholar 

  63. Neen D, Noyes D, Shaw M, Gwilym S, Fairlie N, Birch N. Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft. Spine (Phila Pa 1976). 2006;31(18):E636–40.

    Article  Google Scholar 

  64. Gangji V, De Maertelaer V, Hauzeur J-P. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone. 2011;49(5):1005–9.

    Article  PubMed  Google Scholar 

  65. Zhao D, Cui D, Wang B, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50(1):325–30.

    Article  PubMed  Google Scholar 

  66. Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res. 1991;266:259–70.

    Google Scholar 

  67. Hernigou P, Homma Y. Tissue bioengineering in orthopedics. Clin Cases Miner Bone Metab. 2012;9(1):21–3.

    PubMed  PubMed Central  Google Scholar 

  68. Desai P, Hasan SM, Zambrana L, et al. Bone mesenchymal stem cells with growth factors successfully treat nonunions and delayed unions. HSS J. 2015;11(2):104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dimar JR, Glassman SD. The art of bone grafting. Curr Opin Orthop. 2007;18:8.

    Google Scholar 

  70. An HS, Lynch K, Toth J. Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord. 1995;8(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  71. Jorgenson SS, Lowe TG, France J, Sabin J. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine (Phila Pa 1976). 1994;19(18):2048–53.

    Article  CAS  Google Scholar 

  72. Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res. 1989;240:129–36.

    Google Scholar 

  73. Park JJ, Hershman SH, Kim YH. Updates in the use of bone grafts in the lumbar spine. Bull Hosp Jt Dis. 2013;71(1):39–48.

    Google Scholar 

  74. Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg. 2013;21(1):51–60.

    Article  PubMed  Google Scholar 

  75. Glassman SD, Howard JM, Sweet A, Carreon LY. Complications and concerns with osteobiologics for spine fusion in clinical practice. Spine (Phila Pa 1976). 2010;35(17):1621–8.

    Article  Google Scholar 

  76. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86-A(10):2243–50.

    Article  PubMed  Google Scholar 

  77. Cammisa FP, Lowery G, Garfin SR, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine (Phila Pa 1976). 2004;29(6):660.

    Article  Google Scholar 

  78. Schizas C, Triantafyllopoulos D, Kosmopoulos V, Tzinieris N, Stafylas K. Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled case pilot study. Arch Orthop Trauma Surg. 2008;128(6):621–5.

    Article  PubMed  Google Scholar 

  79. Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J. 1(2):131–7.

    Google Scholar 

  80. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84-A(3):454–64.

    Article  PubMed  Google Scholar 

  81. Sundberg E, Elboghdady I, Aboushaala K, Singh K. Mesenchymal stem cells and spinal arthrodesis. Semin Spine Surg. 2015;27:86–89.

    Google Scholar 

  82. Kerr EJ, Jawahar A, Wooten T, Kay S, Cavanaugh DA, Nunley PD. The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures: an alternative to recombinant human bone morphogenetic protein. J Surg Orthop Adv. 2011;20(3):193–7.

    PubMed  Google Scholar 

  83. Ammerman JM, Libricz J, Ammerman MD. The role of Osteocel Plus as a fusion substrate in minimally invasive instrumented transforaminal lumbar interbody fusion. Clin Neurol Neurosurg. 2013;115(7):991–4.

    Article  PubMed  Google Scholar 

  84. Tohmeh AG, Watson B, Tohmeh M, Zielinski XJ. Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. Sci World J. 2012;2012:263637.

    Article  Google Scholar 

  85. Berven S, Tay BK, Kleinstueck FS, Bradford DS. Clinical applications of bone graft substitutes in spine surgery: Consideration of mineralized and demineralized preparations and growth factor supplementation. Eur Spine J. 2001;10(Suppl. 2):169–77.

    Google Scholar 

  86. Tay Vikas BKB, Patel V, Bradford DS. Calcium sulfate- and calcium phosphate-based bone substitutes mimicry of the mineral phase of bone. Orthop Clin North Am. 1999;30(4):615–23.

    Article  Google Scholar 

  87. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242(4885):1528–34.

    Article  CAS  PubMed  Google Scholar 

  88. Dutta SR, Passi D, Singh P, Bhuibhar A. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2015;184(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  89. Jang D-W, Franco RA, Sarkar SK, Lee B-T. Fabrication of porous hydroxyapatite scaffolds as artificial bone preform and its biocompatibility evaluation. ASAIO J. 2014;60(2):216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Resnick DK, Choudhri TF, Dailey AT, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: bone graft extenders and substitutes. J Neurosurg Spine. 2005;2(6):733–6.

    Article  PubMed  Google Scholar 

  91. Sathira-Angkura V, Kunakornsawat S, Assawachutithamrong B, Tungsiripat R. Two-year outcome of hydroxyapatite mixed with autogenous bone marrow and local bone graft for posterolateral lumbar fusion. J Med Assoc Thai. 2011;94(9):1096–103.

    PubMed  Google Scholar 

  92. Acharya NK, Kumar RJ, Varma HK, Menon VK. Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study. J Spinal Disord Tech. 2008;21(2):106–11.

    Article  PubMed  Google Scholar 

  93. Gruber R, Varga F, Fischer MB, Watzek G. Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res. 2002;13(5):529–35.

    Article  PubMed  Google Scholar 

  94. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14(11):1805–15.

    Article  CAS  PubMed  Google Scholar 

  95. Lowery GL, Kulkarni S, Pennisi AE. Use of autologous growth factors in lumbar spinal fusion. Bone. 1999;25(2 Suppl):47S–50S.

    Article  CAS  PubMed  Google Scholar 

  96. Landi A, Tarantino R, Marotta N, et al. The use of platelet gel in postero-lateral fusion: Preliminary results in a series of 14 cases. Eur Spine J. 2011;20(SUPPL. 1):S61–7.

    Article  PubMed  Google Scholar 

  97. Carreon LY, Glassman SD, Anekstein Y, Puno RM. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine (Phila Pa 1976). 2005;30(9):E243–6. discussion E247

    Article  Google Scholar 

  98. Implications C. Platelet concentration and its effect on bone formation in calvarial defects: an experimental study in rabbits. J Prosthet Dent. 2001;86(4):428–33.

    Article  Google Scholar 

  99. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.

    Article  CAS  PubMed  Google Scholar 

  100. Castro FPJ. Role of activated growth factors in lumbar spinal fusions. J Spinal Disord Tech. 2004;17(5):380–4.

    Article  PubMed  Google Scholar 

  101. Urist MR, Huo YK, Brownell AG, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci U S A. 1984;81(2):371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xiao Y-T, Xiang L-X, Shao J-Z. Bone morphogenetic protein. Biochem Biophys Res Commun. 2007;362(3):550–3.

    Article  CAS  PubMed  Google Scholar 

  103. Zegzula HD, Buck DC, Brekke J, Wozney JM, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg Am. 1997;79(12):1778–90.

    Article  CAS  PubMed  Google Scholar 

  104. Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003;85-A(8):1544–52.

    Article  PubMed  Google Scholar 

  105. Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine (Phila Pa 1976). 2003;28(12):1219–24. discussion 1225

    Google Scholar 

  106. Dimar JR, Glassman SD, Burkus KJ, Carreon LY. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine (Phila Pa 1976). 2006;31(22):2534–9. discussion 2540

    Article  Google Scholar 

  107. Vaccaro AR, Lawrence JP, Patel T, et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis: a long-term (>4 years) pivotal study. Spine (Phila Pa 1976). 2008;33(26):2850–62.

    Article  Google Scholar 

  108. Ong KL, Villarraga ML, Lau E, Carreon LY, Kurtz SM, Glassman SD. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine (Phila Pa 1976). 2010;35(19):1794–800.

    Article  Google Scholar 

  109. Burkus JK, Sandhu HS, Gornet MF, Longley MC. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am. 2005;87(6):1205–12.

    PubMed  Google Scholar 

  110. Haid RW, Branch CL, Alexander JT, Burkus JK. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J. 4(5):527–38. discussion 538-9

    Google Scholar 

  111. Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG. The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine (Phila Pa 1976). 2007;32(24):2764–70.

    Article  Google Scholar 

  112. Kim YJ, Bridwell KH, Lenke LG, Rinella AS, Edwards C, Edward C. Pseudarthrosis in primary fusions for adult idiopathic scoliosis: incidence, risk factors, and outcome analysis. Spine (Phila Pa 1976). 2005;30(4):468–74.

    Article  Google Scholar 

  113. Crandall DG, Revella J, Patterson J, Huish E, Chang M, McLemore R. Transforaminal lumbar interbody fusion with rhBMP-2 in spinal deformity, spondylolisthesis, and degenerative disease--part 1: Large series diagnosis related outcomes and complications with 2- to 9-year follow-up. Spine (Phila Pa 1976). 2013;38(13):1128–36.

    Article  Google Scholar 

  114. Maeda T, Buchowski JM, Kim YJ, Mishiro T, Bridwell KH. Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine (Phila Pa 1976). 2009;34(20):2205–12.

    Article  Google Scholar 

  115. Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9.

    Article  PubMed  Google Scholar 

  116. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.

    Article  PubMed  Google Scholar 

  117. Epstein NE. Pros, cons, and costs of INFUSE in spinal surgery. Surg Neurol Int. 2011;2:10.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bess S, Line BG, Lafage V, et al. Does recombinant human bone morphogenetic protein-2 use in adult spinal deformity increase complications and are complications associated with location of rhBMP-2 use? A prospective, multicenter study of 279 consecutive patients. Spine (Phila Pa 1976). 2014;39(3):233–42.

    Article  Google Scholar 

  119. Kleeff J, Maruyama H, Ishiwata T, et al. Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology. 1999;116(5):1202–16.

    Article  CAS  PubMed  Google Scholar 

  120. Laitinen M, Jortikka L, Halttunen T, et al. Measurement of total and local bone morphogenetic protein concentration in bone tumours. Int Orthop. 1997;21(3):188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Carragee EJ, Chu G, Rohatgi R, et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am. 2013;95(17):1537–45.

    Article  PubMed  Google Scholar 

  122. Malham GM, Giles GG, Milne RL, Blecher CM, Brazenor GA. Bone morphogenetic proteins in spinal surgery: what is the fusion rate and do they cause cancer? Spine (Phila Pa 1976). 2015;40(22):1737–42.

    Article  Google Scholar 

  123. Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009;302(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  124. Mroz TE, Wang JC, Hashimoto R, Norvell DC. Complications related to osteobiologics use in spine surgery: a systematic review. Spine (Phila Pa 1976). 2010;35(9 Suppl):S86–104.

    Article  Google Scholar 

  125. McClellan JW, Mulconrey DS, Forbes RJ, Fullmer N. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J Spinal Disord Tech. 2006;19(7):483–6.

    Article  PubMed  Google Scholar 

  126. Lewandrowski K-U, Nanson C, Calderon R. Vertebral osteolysis after posterior interbody lumbar fusion with recombinant human bone morphogenetic protein 2: a report of five cases. Spine J. 7(5):609–14.

    Google Scholar 

  127. Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976). 2006;31(10):E277–84.

    Article  Google Scholar 

  128. Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008;62(5 Suppl 2):ONS423–31. discussion ONS431

    PubMed  Google Scholar 

  129. Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine (Phila Pa 1976). 2007;32(25):2885–90.

    Article  Google Scholar 

  130. Meisel HJ, Schnöring M, Hohaus C, et al. Posterior lumbar interbody fusion using rhBMP-2. Eur Spine J. 2008;17(12):1735–44.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kanayama M, Hashimoto T, Shigenobu K, Yamane S, Bauer TW, Togawa D. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine (Phila Pa 1976). 2006;31(10):1067–74.

    Article  Google Scholar 

  132. Rihn JA, Makda J, Hong J, et al. The use of RhBMP-2 in single-level transforaminal lumbar interbody fusion: a clinical and radiographic analysis. Eur Spine J. 2009;18(11):1629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rihn JA, Patel R, Makda J, et al. Complications associated with single-level transforaminal lumbar interbody fusion. Spine J. 2009;9(8):623–9.

    Article  PubMed  Google Scholar 

  134. Tiusanen H, Seitsalo S, Osterman K, Soini J. Retrograde ejaculation after anterior interbody lumbar fusion. Eur Spine J. 1995;4(6):339–42.

    Article  CAS  PubMed  Google Scholar 

  135. Sasso RC, Kenneth Burkus J, LeHuec J-C. Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. Spine (Phila Pa 1976). 2003;28(10):1023–6.

    Google Scholar 

  136. Christensen FB, Bünger CE. Retrograde ejaculation after retroperitoneal lower lumbar interbody fusion. Int Orthop. 1997;21(3):176–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: A cohort controlled study. Spine J. 2011;11(6):511–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Passias MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cassilly, R.T., Jalai, C.M., Poorman, G.W., Passias, P.G. (2017). Biologics for Adult Lumbar Scoliosis. In: Klineberg, E. (eds) Adult Lumbar Scoliosis. Springer, Cham. https://doi.org/10.1007/978-3-319-47709-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47709-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47707-7

  • Online ISBN: 978-3-319-47709-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics