Skip to main content

Nanotechnology for Transcorneal Drug Targeting in Glaucoma: Challenges and Progress

  • Chapter
  • First Online:
Ocular Drug Delivery: Advances, Challenges and Applications

Abstract

The eye is a highly protected organ, and designing ocular formulation for effective therapy, is challenging for drug delivery researcher. The anatomical and physiological barriers resulted in a low ocular bioavailability of administered drugs. Poor bioavailability of ocularly administered drugs is mainly due to factors responsible for precorneal loss (like tear dynamics, non-productive absorption, a transient residence time in the cul-de-sac, and relative impermeability of the corneal epithelial membrane). Due to these constraints, less than 5 % of the administered dose is absorbed from the conventional ophthalmic dosage forms. Vision-threatening diseases like glaucoma alter the physiology and molecular mechanism of vision. Ocular drug delivery in this dreadful condition is quite challenging. Though, the potential use of a nanoparticulate system as drug carriers has led to the development of many different colloidal delivery vehicles for targeted delivery in glaucoma. Drug loaded colloidal carriers associated with several favorable biological characteristics such as biodegradability, biocompatibility and mucoadhesiveness have been found to be effective in transcorneal drug targeting in glaucoma. These nanoparticulate systems exhibited better ocular drug efficacy by improving ocular bioavailability without blurring the vision in glaucoma. This chapter aims to briefly discuss the ocular barriers to glaucoma drug delivery along with nanotechnology mediated transcorneal drug targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Addo RT, Siddig A, Patel NJ, Siwale R, Akande J, Uddin AU, D’Souza MJ (2010) Formulation, characterization, and testing of tetracaine hydrochloride-loaded albumin-chitosan microparticles for ocular drug delivery. J Microencapsul 27(2):95–104

    Article  CAS  Google Scholar 

  • Addo RT, Yeboah KG, Siwale RC, Siddig A, Jones A, Ubale RV, Akande J, Nettey H, Patel NJ, Addo E, D’Souza MJ (2015) Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. J Pharm Sci 104(5):1677–1690

    Article  CAS  Google Scholar 

  • Aggarwal D, Pal D, Mitra AK, Kaur IP (2007) Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm 338(1–2):21–29

    Article  CAS  Google Scholar 

  • Akhter S, Talegaonkar S, Khan ZI, Jain GK, Khar RK, Ahmad FJ (2011) Assessment of ocular pharmacokinetics and safety of ganciclovir loaded nanoformulation. Biomed Nanotechnol 7:144–145

    Article  CAS  Google Scholar 

  • Aksungur P, Demirbilek M, Denkbas EB, Vandervoort J, Ludwig A, Unlu N (2007) Development & characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J. Control Rel 151:286–294

    Article  Google Scholar 

  • Ananthula HK, Vaishya RD, Barot M, Mitra AK (2009) Duane’s Ophthalmology. In: Tasman W, Jaeger EA (eds) Bioavailability. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Bhagav P, Upadhyay H, Chandran S (2011) Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech 12(4):1087–1101

    Article  CAS  Google Scholar 

  • Bourlais CL, Acar L, Zia H, Sado PA, Neehan T et al (1998) Ophthalmic drug delivery systems-recent advances. Prog Retin Eye Res 17(1):33–58

    Google Scholar 

  • Casson RJ, Chidlow GW, John PM, Crowston JG, Goldberg I (2012) Definition of glaucoma: Clinical and experimental concepts. Clin Exp Ophthalmol 40(4):341–349

    Article  Google Scholar 

  • Chen R, Qian Y, Li R, Zhang Q, Liu D, Wang M, Xu Q (2010) Methazolamide calcium phosphate nanoparticles in an ocular delivery system. Yakugaku Zasshi 130(3):419–424

    Article  CAS  Google Scholar 

  • De-Santis LM Jr (1994) Adrenergic receptor-blocking agents. In: Mauger TF, Craig EL (eds) Havener’s ocular pharmacology, 6th edn. Mosby-Year Book, St Louis, MO, pp 84–112

    Google Scholar 

  • Dey S, Anand BS, Patel J, Mitra AK (2003a) Transporters/receptors in the anterior chamber: pathways to explore ocular drug delivery strategies. Expert Opin Biol Ther 3(1):23–44

    Article  CAS  Google Scholar 

  • Dey S, Patel J, Anand BS et al (2003b) Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci 44(7):2909–2918

    Article  Google Scholar 

  • Dey S, Gunda S, Mitra AK (2004) Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther 311(1):246–255

    Article  CAS  Google Scholar 

  • Diepold R, Kreuter J, Himber J, Gurny R, Lee VHL, Robinson JR, Saettone MF, Schnaudigel OE (1989) Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops as a novel depot formulation (nanoparticles). Graefe’s Arch Clin Exp Ophthalmol 227:188

    Article  CAS  Google Scholar 

  • Diebold Y, Jarrín M, Sáez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 28(8):1553–1564

    Article  CAS  Google Scholar 

  • Doina G, Hosking SL, Orgu S (2004) Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol 49:491–508

    Article  Google Scholar 

  • Duijm HF, van den Berg TJ, Greve EL (1997) Choroidal haemodynamics in glaucoma. Br J Ophthalmol 81:735–742

    Article  CAS  Google Scholar 

  • Durrani AM, Davies NM, Thomas M, Kellaway IW (1992) Pilocarpine bioavailability from a mucoadhesive liposomal ophthalmic delivery system. Int J Pharm 88(1):409–415

    Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benitas S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  • Gaudana R, Jwala J, Boddu SH et al (2009a) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216

    Article  CAS  Google Scholar 

  • Gaudana R, Jwala J, Boddu SH, Mitra AK (2009b) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216

    Article  CAS  Google Scholar 

  • Geroski DH, Edelhauser HF (2001) Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev 52(1):37–48

    Article  CAS  Google Scholar 

  • Gherghel D, Hosking SL, Orgu S (2004) Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol 49:491–508

    Article  Google Scholar 

  • Guinedi AS, Mortada ND, Mansour S, Hathout RM (2005) Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm 306:71–82

    Article  CAS  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2011) Biodegradable levofloxacine nanoparticles for sustained ocular drug delivery. J Drug Target 19(6):409–417

    Article  CAS  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed Nanotech Boil Med 6:324–333

    Article  CAS  Google Scholar 

  • Hämäläinen KM, Kontturi K, Auriola S, Murtomäki L, Urtti A (1997) Estimation of pore size and pore density of biomembranes from permeability measurements of polyethylene glycols using an effusion-like approach. J Controlled Release 49:97–104

    Google Scholar 

  • Harima T, Kreuter J, Speiser P, Boye T, Gurny R, Kubis A (1986) Enhancement of miotic response of rabbits with pilocarpine-loaded polybutylcyanoacrylate nanoparticles. Int J Pharm 33:187

    Article  Google Scholar 

  • Hathout RM, Mansour S, Mortada ND, Guinedi AS (2007) Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS Pharm SciTech 8(1):E1–E12

    Article  Google Scholar 

  • Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225

    Article  CAS  Google Scholar 

  • Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B 45(3–4):167–173

    Article  CAS  Google Scholar 

  • Huang AJW, Tseng SCG, Kenyon KR (1989) Paracellular permeability of cornea1 and conjunctival epithelia. Invest Ophthalmol Vis Sci 30:684–689

    CAS  PubMed  Google Scholar 

  • Hyun JJ, Michelle AJ, Carbia BE, Plummer C, Chauhan A (2013) Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release 165:82–89

    Article  Google Scholar 

  • Jain GK, Pathan SA, Akhter S, Jayabalan N, Talagaonkar S, Khar RK, Ahmad FJ (2011) Microscopic and spectroscopic evaluation of novel PLGA-Chitosan nanoplexes as ocular delivery system. Colloids Surf B Biointerfaces 82(2):397–403. doi:10.1016/j.colsurfb.2010.09.010

    Article  CAS  Google Scholar 

  • Jain K, Kumar RS, Sood S, Dhyanandhan G (2013) Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. Curr Drug Deliv 10(5):493–499

    Article  CAS  Google Scholar 

  • Jain S, Thompson JR, Foot B, Tatham A, Eke T (2014) Severe intraocular pressure rise following intravitreal triamcinolone: a national survey to estimate incidence and describe case profiles. Eye (Lond). doi:10.1038/eye.2013.306

    Article  CAS  Google Scholar 

  • Jarvinen T, Pate DW, Lain K (2000) Cannabinoids in the treatment of glaucoma. Pharmacol Ther 295:203–220

    Google Scholar 

  • Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K (2010) Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf. B Biointerfaces 81:498–502

    Article  CAS  Google Scholar 

  • Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K (2010) Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target 18(3):191–204

    Article  CAS  Google Scholar 

  • Kao HJ, Lin HR, Lo YL, Yu SP (2006) Characterization of pilocarpine-loaded chitosan/carbopol nanoparticles. J Pharm Pharmacol 58(2):179–186

    Article  CAS  Google Scholar 

  • Kaur H, Ahuja M, Kumar S, Dilbaghi N (2012) Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. Int J Biol Macromol 50:833–839

    Article  CAS  Google Scholar 

  • Kaur IP, Aggarwal D, Singh H, Kakkar S (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248(10):1467–1472. doi:10.1007/s00417-010-1383-0

    Article  CAS  Google Scholar 

  • Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14

    Article  CAS  Google Scholar 

  • Kawazu K, Yamada K, Nakamura M, Ota A (1999) Characterization of cyclosporin A transport in cultured rabbit corneal epithelial cells: P-glycoprotein transport activity and binding to cyclophilin. Invest Ophthalmol Vis Sci 40(8):1738–1744

    CAS  PubMed  Google Scholar 

  • Kaye GI, Sibley RC, Hoefle FB (1973) Recent studies on the nature and function of the cornea1 endothelial barrier. Exp Eye Res 15:585–613

    Article  CAS  Google Scholar 

  • Kayseri O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5

    Article  Google Scholar 

  • Kowing D, Messer D, Slagle S, Wasik A (2010) Programs to optimize adherence in glaucoma. Optometry 81:339–350

    Article  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf A 72(1):1–18

    Google Scholar 

  • Langman MJS, Lancashire RJ, Cheng KK, Stewart PM (2005) Systemic hypertension and glaucoma: mechanisms in common and co-occurrence. Br J Ophthalmol 89(8):960–963

    Article  CAS  Google Scholar 

  • Lee VH, Robinson JR (1986) Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharm 2:67–108

    Article  CAS  Google Scholar 

  • Leonardi A, Bucolo C, Drago F, Salomone S, Pignatello R (2014) Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int J Pharm 478(1):180–186

    Article  Google Scholar 

  • Liaw J, Robinson JR (1992) The effect of polyethylene glycol molecular weight on cornea1 transport and the related influence of penetration enhancers. Int J Pharm 88:125–140

    Article  CAS  Google Scholar 

  • Liaw J, Robinson JR (1993) Ocular penetration enhancers. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 369–381

    Google Scholar 

  • Lin HR, Yu SP, Kuo CJ, Kao HJ, Lo YL, Lin YJ (2007) Pilocarpine-loaded chitosan-PAA nanosuspension for ophthalmic delivery. J Biomater Sci Polym Ed 18(2):205–221

    Article  CAS  Google Scholar 

  • Losa C, Alonso MJ, Vila JL, Orallo F, Martinez J, Saavedra JA, Pastor JC (1992) Reduction of cardiovascular side effects associated with ocular administration of metipranolol by inclusion in polymeric nanocapsules. J. Ocul Pharmacol 8:191

    Article  CAS  Google Scholar 

  • Losa C, Marchal-Heussler L, Orallo F, Vila Jato JL, Alonso MJ (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87

    Article  CAS  Google Scholar 

  • Machaand SA, Mitra K (2003) Overview of ocular drug delivery. In: Mitra AK (ed) ophthalmic drug delivery systems, vol 130. Marcel-Dekker, New York, pp 1–12

    Google Scholar 

  • Mannermaa E, Vellonen KS, Urtti A (2006) Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58(11):1136–1163

    Article  CAS  Google Scholar 

  • Marchal-Haussler L, Fessi H, Devissaguet JP, Hoffman M, Maincent P (1992) Colloidal drug delivery systems for the eye. A comparison of the efficacy of three different polymers: polyisobutylcyanoacrylate, polylactic-coglycolic acid, poly-epsilon-caprolactone. Pharm Sci 2:98

    Google Scholar 

  • Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P (1993) Poly (caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 10:386

    Article  CAS  Google Scholar 

  • Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears MC (ed) Handbook of experimental pharmacology, vol. 69. Pharmacology of the Eye. Springer-Verlag, Berlin-Heidelberg, pp 19–l16

    Chapter  Google Scholar 

  • Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594

    Article  CAS  Google Scholar 

  • Michelson G, Langhans MJ, Groh MJ (1996) Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma 5:91–98

    CAS  PubMed  Google Scholar 

  • Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G (2013) Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm 440(2):135–140

    Article  CAS  Google Scholar 

  • Nathanson JA (1980) Effects of a potent and specific beta 2-adrenoceptor antagonist on intraocular pressure. PNAS, USA 77(12):7420–7424

    Google Scholar 

  • Newell DG (1986) Monoclonal antibodies directed against the flagella of Campylobacter jejuni: cross-reacting and serotypic specificity and potential use in diagnosis. J Hyg (Lond) 96(3):377–384

    Article  CAS  Google Scholar 

  • Ohtake Y, Tanino T, Kimura I et al (2004) Long-term efficacy and safety of combines topical antiglaucoma therapy-timolol and unoprostone versus betaxolol and unoprostone. Nippon Ganka Gakkai Zasshi. J Jpn Ophthalmol Soc 108:23–28

    Google Scholar 

  • Omaima NE, Ahmed HH (1997) Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm 158:121–125

    Google Scholar 

  • Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohyd Polym 73(1):44–54

    Article  CAS  Google Scholar 

  • Parhi R, Suresh P (2010) Production of solid lipid nanoparticles—drug loading and release mechanism. J Chem Pharm Res 2(1):211–227

    Google Scholar 

  • Piltz-Seymour JR, Grunwald JE, Hariprasad SM, Dupont J (2001) Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 132:63–69

    Article  CAS  Google Scholar 

  • Quaranta L, Katsanos A, Russo A et al (2013a) 24-hour intraocular pressure and ocular perfusion pressure in glaucoma; major review. Surv Ophthalmol 58:26–40

    Article  Google Scholar 

  • Quaranta L, Katsanos A, Russo A, Riva I (2013b) 24-hour intraocular pressure and ocular perfusion pressure in glaucoma; major review. Surv Ophthalmol 58:26–40

    Article  Google Scholar 

  • Quigley HA (1996) Number of people with glaucoma worldwide. J Ophthalmol 80:389–393

    CAS  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  CAS  Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven Press, New York

    Google Scholar 

  • Rhee DJ (2013) Glaucoma. In: Porter RS, Kaplan JL (eds) The Merck manual home health handbook. Retrieved 12 Dec 2013

    Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    Article  CAS  Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  Google Scholar 

  • Satilmis M, Orgu S, Doubler B et al (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135:664–669

    Article  Google Scholar 

  • Saxena R, Prakash J, Mathur P, Gupta SK (2002) Pharmacotherapy of Glaucoma. Indian J Pharmacol 34:71–85

    CAS  Google Scholar 

  • Schoenwald RD (1990) Ocular drug delivery. Pharmacokinetic considerations. Clin. Pharm. 18:255–269

    Article  CAS  Google Scholar 

  • Seyfoddin A, Shaw J, Al-Kassas R (2010) Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 17(7):467–489

    Article  CAS  Google Scholar 

  • Shields MB (1992) Adrenergic inhibitors. In: Williams MD (ed) Textbook of glaucoma, 3rd edn. Wilkins, Baltimore, pp 480–499

    Google Scholar 

  • Singh J, Chhabra G, Pathak K (2014) Development of acetazolamide loaded, pH triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro, ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm 40(9):1223

    Article  Google Scholar 

  • Singh KH, Shinde UA (2011) Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie 66(8):594–599

    CAS  PubMed  Google Scholar 

  • Stroman GA, Stewart WC, Golnik KC (1995) Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol 113:168–172

    Article  CAS  Google Scholar 

  • Susanna R, Basseto FL (1992) Hemorrhage of the optic disc and neurosensorial dysacousia. J Glaucoma 1:248–253

    Article  CAS  Google Scholar 

  • Tataru CP, Purcarea VL (2012) Antiglaucoma pharmacotherapy. J Med Life 5:247–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ticho U, Blumenthal M, Zonis S, Gal A, Blank I, Mazor ZW (1979a) Piloplex, a new long-acting pilocarpine polymer salt. A long-term study. Br J Opthalmol 63:48

    Article  Google Scholar 

  • Ticho U, Blumenthal M, Zonis S, Gal A, Blank I, Mazor ZW (1979b) A clinical trial with Piloplex—a new long-acting pilocarpine compound: preliminary report. Ann Ophthalmol 11:555

    CAS  PubMed  Google Scholar 

  • Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2(3):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urtti A, Pipkin JD, Rork G, Sendo T, Finne U, Repta AJ (1990) Controlled drug delivery for esperimental ocular studies with timolol 2. Ocular and systemic ahsorption in rabbits. Int J Pharm 61:241–249

    Google Scholar 

  • Urtti A, Rouhiainen H, Kaila T, Saano V (1994) Controlled ocular timolol delivery: systemic absorption and intraocular pressure effects in humans. Pharm Res 11(9):1278–1282

    Google Scholar 

  • Van Buskirk EM, Cioffi GA (1992) Glaucomatous optic neuropathy. Am J Ophthalmol 113:447–452

    Article  Google Scholar 

  • Vandervoort J, Ludwig A (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur. J. Biopharm 57:251–261

    Article  CAS  Google Scholar 

  • Vidmar V, Pepeljnjak S, Jals˘enjak I (1985) The in vivo evaluation of poly (lactic acid) microcapsules of pilocarpine in hydrochloride. J Microen 2:289

    Article  CAS  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2010) Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18(4):292–302. doi:10.3109/10611860903450023

    Article  Google Scholar 

  • Wang F, Chen L, Zhang D, Jiang S, Shi K, Huang Y, Li R, Xu Q (2014a) Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target 22(9):849–858

    Article  CAS  Google Scholar 

  • Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, Xu Q, Li R (2014b) Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design. J Liposome Res 24(3):171–181

    Article  CAS  Google Scholar 

  • Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK (2014) Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces 122:423–431

    Article  CAS  Google Scholar 

  • Wasutrasawat P, Al-Obaidi H, Gaisford S, Lawrence MJ, Warisnoicharoen W (2013) Drug solubilisation in lipid nanoparticles containing high melting point triglycerides. Eur J Pharm Biopharm 85(3):365–371

    Article  CAS  Google Scholar 

  • Wenger Y, Schneider RJ, Reddy GR, Kopelman R, Jolliet O, Philbert MA (2011) Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol Appl Pharmacol 251:181–190

    Article  CAS  Google Scholar 

  • Zhang R, He R, Qian J, Guo J, Xue K, Yuan YF (2010) Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophth Vis Sci 51(7):3575–3582

    Article  Google Scholar 

  • Zhu X, Su M, Tang S, Wang L, Liang X, Meng F, Hong Y, Xu Z (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol. Vis. 18:1973–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer AK, Chetoni P, Saettone MF, Zerbe H, Kreuter J (1995) Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers. J Cont Rel 33:31

    Article  CAS  Google Scholar 

  • Zimmer A, Mutschler E, Lambrecht G, Mayer D, Kreuter J (1994) Pharmacokinetic and Pharmacodynamic aspects of an ophthalmic pilocarpine nanoparticle-delivery-system. Pharm Res 11:1435

    Article  CAS  Google Scholar 

  • Zimmer AK, Kreuter J, Robinson JR (1991) Studies on the transport pathway of PBCA nanoparticles in ocular tissues. J Microencapsul 8(4):497–504

    Article  CAS  Google Scholar 

  • Zimmerman TJ (1993) Topical ophthalmic beta blockers: a comparative review. J Ocul Pharmacol 9:373–384

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Addo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Zafar, A., Ahmad, J., Akhter, S., Addo, R.T. (2016). Nanotechnology for Transcorneal Drug Targeting in Glaucoma: Challenges and Progress. In: Addo, R. (eds) Ocular Drug Delivery: Advances, Challenges and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-47691-9_6

Download citation

Publish with us

Policies and ethics