Other Advances in Ocular Drug Delivery

  • Lunawati BennettEmail author


Ocular drug delivery has many challenges due to the physiology of the eye and the many natural barriers that most drugs need to encounter to permeate the intended tissues. Although traditional eye drops are invasive and convenient, they are inefficient for several ocular diseases due to their low ocular bioavailability and difficulty in delivering a drug to the posterior segment of the eye. Procedures such as implants or frequent intravitreal injections are invasive and challenging; however, this challenges present unique opportunities for innovative drug delivery approaches. New approaches to ocular drug delivery are aimed at: overcoming the disadvantages of existing therapies, overcoming short ocular contact time, increasing low bioavailability drugs to permeate tissues better, limiting dosing frequency, and reducing the invasiveness of some methodologies. This chapter discusses other significant advances in ophthalmic drug delivery such as gene therapy, iontophoresis, sonophoresis, and use of microneedle, hydrogels, and punctual plug delivery systems. A method for restoring light sensing in using retinal prosthetics, optogenetics, and chemical photoswitches are also discussed.


Advances in ocular delivery Iontophoresis Microneedles Gene therapy 


  1. Busskamp V, Picaud S, Sahel JA, Roska B (2012) Optogenic therapy for retinitis pigmentosa. Gene Ther 19:169–175CrossRefGoogle Scholar
  2. Chen H (2015) Recent development in ocular drug delivery. J Drug Target 23:597–604CrossRefGoogle Scholar
  3. Eljarrat-Binstock E, Orucov F, Frucht-Pery J et al (2008) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24(3):344–350CrossRefGoogle Scholar
  4. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360CrossRefGoogle Scholar
  5. Gaudana RJ, Gokulgandhi MR, Boddu SHS, Mitra AK (2012) Recent overview of ocular patents. Recent Pat Drug Deliv Formul 6(2):95–106CrossRefGoogle Scholar
  6. Grinstaff MW (2007) Designing hydrogel adhesives for corneal wound repair. Biomaterials 28(35). doi: 10.1016/j.biomaterials.2007.08.041CrossRefGoogle Scholar
  7. Han Z, Conley M, Makkia R et al (2012) Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS ONE 7:e521819Google Scholar
  8. Horwath-Winter J, Schmut O, Haller-Scholar EM et al (2005) Iodide iontophoresis as a treatment for dry eye syndrome. Br J Opthamol 89(1):40–44CrossRefGoogle Scholar
  9. Kim SH, Galban CJ, Lutz RJ et al (2007) Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging. Invest Opthalalmol Vis Sci 48:808–814CrossRefGoogle Scholar
  10. Kompella UB, Kadam RS, Lee VHL (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1(3):435–456CrossRefGoogle Scholar
  11. Kompella UB, Amrite AC, Ravi RP, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198CrossRefGoogle Scholar
  12. Lee S, Hughes P, Ross A, Robinson M (2010) Biodegradable implants for sustained drug release in the eye. Pharm Res 27:2043–2053CrossRefGoogle Scholar
  13. Manning WCJ, Dwarki VJ, Rendahl K, et al (2002) Use of recombinant gene delivery vectors for treating or preventing disease of the eye. US20020194630Google Scholar
  14. Marc R, Pfeiffer R, Jones B (2014) Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci 5:895–901CrossRefGoogle Scholar
  15. Mohan RR, Tovey JCK, Sharma A, Tandon A (2012) Gene therapy in the cornea: 2005-present. Prog Retin Eye Res 31(1):43–64CrossRefGoogle Scholar
  16. Nirenberg S, Pandarinath C (2012) Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci USA 109:15012–15017CrossRefGoogle Scholar
  17. Patel SR, Lin AS, Edehauser HF, Prausnitz MR (2011) Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res 28:166–176CrossRefGoogle Scholar
  18. Patel SR, Berezovsky DE, McCarey BE et al (2012) Targeted administration into the suprachoroidal space using microneedle for drug delivery to the posterior segment of the eye. Invest Opthalalmol Vis Sci 53(8):4433–4441CrossRefGoogle Scholar
  19. Shen HH, Chan EC, Lee JH et al (2015) Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine (Lond) 10:2093–2107CrossRefGoogle Scholar
  20. Solinis MA, Rodriquez ADP, Apaolaza PS, Rodriquez-Gascon A (2015) Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. doi: 10.1016/j.ejpb.2014.12.022CrossRefPubMedGoogle Scholar
  21. Souza JG, Dias K, Pereira TA et al (2013) Topical delivery of ocular therapeutics: carrier systems and physical methods. J Pharm Pharmacol 66:507–530CrossRefGoogle Scholar
  22. Staout JT, Appukuttan B (2006) Lentiviral vector-mediated gene transfer and uses thereof. US20060062765Google Scholar
  23. Sun S, Diao H, Zhao F et al (2015) Extraction of iron from the rabbit anterior chamber with reverse iontophoresis. J Opthalmol. doi: 10.1155/2015/425438CrossRefGoogle Scholar
  24. Surace EM, Auricchio A (2008) Versatility of AAV vectors for retinal gene transfer. Vision Res 48:353–359CrossRefGoogle Scholar
  25. Tamboli V, Mishra GP, Mitra A (2011) Polymeric vectors for ocular gene delivery. Ther Deliv 2(4):523–536CrossRefGoogle Scholar
  26. Tochitsky I, Polosukhina A, Degtyar VE et al (2014) Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81:800–813CrossRefGoogle Scholar
  27. Vaka SR, Sammeta SM, Day LB, Murthy SN (2008) Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride. Curr Eye Res 33(8):661–667CrossRefGoogle Scholar
  28. Vargeese C, Wang WM, Chen T et al (2005) Polycationic composition for cellular delivery of polynucleotides. US200050222064Google Scholar
  29. Yang H, Tyagi P, Kadam RS et al (2012) Hybrid dendrimers hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and anti-glaucoma effects for four days following one-time topical administration. ACS Nano 6:7595–7606CrossRefGoogle Scholar
  30. Zrenner E (2013) Fighting blindness with microelectronica. Sci Transl Med 5:210–216CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of PharmacyUnion UniversityJacksonUSA

Personalised recommendations