Skip to main content

Other Advances in Ocular Drug Delivery

  • Chapter
  • First Online:
Book cover Ocular Drug Delivery: Advances, Challenges and Applications

Abstract

Ocular drug delivery has many challenges due to the physiology of the eye and the many natural barriers that most drugs need to encounter to permeate the intended tissues. Although traditional eye drops are invasive and convenient, they are inefficient for several ocular diseases due to their low ocular bioavailability and difficulty in delivering a drug to the posterior segment of the eye. Procedures such as implants or frequent intravitreal injections are invasive and challenging; however, this challenges present unique opportunities for innovative drug delivery approaches. New approaches to ocular drug delivery are aimed at: overcoming the disadvantages of existing therapies, overcoming short ocular contact time, increasing low bioavailability drugs to permeate tissues better, limiting dosing frequency, and reducing the invasiveness of some methodologies. This chapter discusses other significant advances in ophthalmic drug delivery such as gene therapy, iontophoresis, sonophoresis, and use of microneedle, hydrogels, and punctual plug delivery systems. A method for restoring light sensing in using retinal prosthetics, optogenetics, and chemical photoswitches are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Busskamp V, Picaud S, Sahel JA, Roska B (2012) Optogenic therapy for retinitis pigmentosa. Gene Ther 19:169–175

    Article  CAS  Google Scholar 

  • Chen H (2015) Recent development in ocular drug delivery. J Drug Target 23:597–604

    Article  CAS  Google Scholar 

  • Eljarrat-Binstock E, Orucov F, Frucht-Pery J et al (2008) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24(3):344–350

    Article  CAS  Google Scholar 

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360

    Article  CAS  Google Scholar 

  • Gaudana RJ, Gokulgandhi MR, Boddu SHS, Mitra AK (2012) Recent overview of ocular patents. Recent Pat Drug Deliv Formul 6(2):95–106

    Article  CAS  Google Scholar 

  • Grinstaff MW (2007) Designing hydrogel adhesives for corneal wound repair. Biomaterials 28(35). doi:10.1016/j.biomaterials.2007.08.041

    Article  CAS  Google Scholar 

  • Han Z, Conley M, Makkia R et al (2012) Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS ONE 7:e521819

    Google Scholar 

  • Horwath-Winter J, Schmut O, Haller-Scholar EM et al (2005) Iodide iontophoresis as a treatment for dry eye syndrome. Br J Opthamol 89(1):40–44

    Article  CAS  Google Scholar 

  • Kim SH, Galban CJ, Lutz RJ et al (2007) Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging. Invest Opthalalmol Vis Sci 48:808–814

    Article  Google Scholar 

  • Kompella UB, Kadam RS, Lee VHL (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1(3):435–456

    Article  CAS  Google Scholar 

  • Kompella UB, Amrite AC, Ravi RP, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198

    Article  CAS  Google Scholar 

  • Lee S, Hughes P, Ross A, Robinson M (2010) Biodegradable implants for sustained drug release in the eye. Pharm Res 27:2043–2053

    Article  CAS  Google Scholar 

  • Manning WCJ, Dwarki VJ, Rendahl K, et al (2002) Use of recombinant gene delivery vectors for treating or preventing disease of the eye. US20020194630

    Google Scholar 

  • Marc R, Pfeiffer R, Jones B (2014) Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci 5:895–901

    Article  CAS  Google Scholar 

  • Mohan RR, Tovey JCK, Sharma A, Tandon A (2012) Gene therapy in the cornea: 2005-present. Prog Retin Eye Res 31(1):43–64

    Article  CAS  Google Scholar 

  • Nirenberg S, Pandarinath C (2012) Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci USA 109:15012–15017

    Article  CAS  Google Scholar 

  • Patel SR, Lin AS, Edehauser HF, Prausnitz MR (2011) Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res 28:166–176

    Article  CAS  Google Scholar 

  • Patel SR, Berezovsky DE, McCarey BE et al (2012) Targeted administration into the suprachoroidal space using microneedle for drug delivery to the posterior segment of the eye. Invest Opthalalmol Vis Sci 53(8):4433–4441

    Article  CAS  Google Scholar 

  • Shen HH, Chan EC, Lee JH et al (2015) Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine (Lond) 10:2093–2107

    Article  CAS  Google Scholar 

  • Solinis MA, Rodriquez ADP, Apaolaza PS, Rodriquez-Gascon A (2015) Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. doi:10.1016/j.ejpb.2014.12.022

    Article  PubMed  Google Scholar 

  • Souza JG, Dias K, Pereira TA et al (2013) Topical delivery of ocular therapeutics: carrier systems and physical methods. J Pharm Pharmacol 66:507–530

    Article  Google Scholar 

  • Staout JT, Appukuttan B (2006) Lentiviral vector-mediated gene transfer and uses thereof. US20060062765

    Google Scholar 

  • Sun S, Diao H, Zhao F et al (2015) Extraction of iron from the rabbit anterior chamber with reverse iontophoresis. J Opthalmol. doi:10.1155/2015/425438

    Article  Google Scholar 

  • Surace EM, Auricchio A (2008) Versatility of AAV vectors for retinal gene transfer. Vision Res 48:353–359

    Article  CAS  Google Scholar 

  • Tamboli V, Mishra GP, Mitra A (2011) Polymeric vectors for ocular gene delivery. Ther Deliv 2(4):523–536

    Article  CAS  Google Scholar 

  • Tochitsky I, Polosukhina A, Degtyar VE et al (2014) Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81:800–813

    Article  CAS  Google Scholar 

  • Vaka SR, Sammeta SM, Day LB, Murthy SN (2008) Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride. Curr Eye Res 33(8):661–667

    Article  CAS  Google Scholar 

  • Vargeese C, Wang WM, Chen T et al (2005) Polycationic composition for cellular delivery of polynucleotides. US200050222064

    Google Scholar 

  • Yang H, Tyagi P, Kadam RS et al (2012) Hybrid dendrimers hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and anti-glaucoma effects for four days following one-time topical administration. ACS Nano 6:7595–7606

    Article  CAS  Google Scholar 

  • Zrenner E (2013) Fighting blindness with microelectronica. Sci Transl Med 5:210–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunawati Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bennett, L. (2016). Other Advances in Ocular Drug Delivery. In: Addo, R. (eds) Ocular Drug Delivery: Advances, Challenges and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-47691-9_10

Download citation

Publish with us

Policies and ethics