Morphological Fundamentals

  • Antonino Pennisi
  • Alessandra Falzone
Part of the Perspectives in Pragmatics, Philosophy & Psychology book series (PEPRPHPS, volume 12)


This chapter is devoted to a detailed reconstruction of the morphological fundamentals of language with particular focus on the functioning of the structures considered in CBM simple externalization interfaces. The Darwinian perspective is more suitable to rebuild the current morphology of human language as a gradual shaping of natural selection in the musculoskeletal and neurocerebral apparatus. Continuity with other primates is discussed here in connection with the evolution of the supralaryngeal vocal tract and the auditory cortex. The differences are measured through selective changes in these organs, always within the framework of the general constraints of form and development (Evo-Devo).


Anatomical Structure Sound Source Auditory Cortex Vocal Tract Auditory Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adenzato, M., & Meini, C. (Eds.). (2006). Psicologia evoluzionistica. Torino: Bollati Boringhieri.Google Scholar
  2. Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2000). “What” and “where” in the human auditory system. Proceeding of National Academy of Sciences, 98, 12301–12306.CrossRefGoogle Scholar
  3. Altmann, C. F., de Oliveira, C. G., Heinemanna, L., & Kaisera, J. (2010). Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex. Neuropsychologia, 48, 2824–2832.CrossRefGoogle Scholar
  4. Anderson, S. R., & Lightfoot, D. W. (2002). The language organ. Linguistics as cognitive physiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Bateman, F. (1868). On aphasia, or loss of speech in cerebral disease. London: J.E. Adlard, Bartholomew Close.Google Scholar
  6. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403(20), 309–312.CrossRefGoogle Scholar
  7. Belin, P., Zatorre, R. J., & Ahad, P. (2002). Human temporal-lobe response to vocal sounds. Cognitive Brain Research, 13, 17–26.CrossRefGoogle Scholar
  8. Bickerton, D. (1990). Language & species. Chicago: The University of Chicago Press.Google Scholar
  9. Budd, T. W., Hall, D. A., Gonçalves, M. S., Akeroyd, M. A., Foster, J. R., Palmer, A. R., et al. (2003). Binaural specialisation in human auditory cortex: an fMRI investigation of interaural correlation sensitivity. NeuroImage, 20, 1783–1794.CrossRefGoogle Scholar
  10. Clarke, S., Bellmann, A., De Ribaupierre, F., & Assal, G. (1996). Non-verbal auditory recognition in normal subjects and brain-damaged patients: Evidence for parallel processing. Neuropsychologia, 34, 587–603.CrossRefGoogle Scholar
  11. Clarke, S., Bellmann, A., Meuli, R. A., Assal, G., & Steck, A. J. (2000). Auditory agnosia and auditory spatial deficits following left hemispheric lesions: Evidence for distinct processing pathways. Neuropsychologia, 38, 797–807.CrossRefGoogle Scholar
  12. Deacon, T. W. (1997). The symbolic species. The co-evolution of language and the human brain. New York: W. W. Norton & Company.Google Scholar
  13. Dunbar, R. (1996). Grooming, gossip and the evolution of Language. Cambridge: Harvard University Press.Google Scholar
  14. Eggermont, J. J., & Wang, X. (2011). Temporal coding in auditory cortex. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 309–328). New York: Springer.CrossRefGoogle Scholar
  15. Fecteau, S., Armony, J. L., Joanette, Y., Lepore, F., & Belin, P. (2003). Is voice processing species-specific. Journal of Cognitive Neuroscience, 10.Google Scholar
  16. Fitch, W. T. (2002). Comparative vocal production and the evolution of speech: Reinterpreting the discent of the Larynx. In A. Wray (Ed.), The transition to language (pp. 21–45). Oxford: Oxford University Press.Google Scholar
  17. Fitch, W. T. (2010). The evolution of language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Fujii, T., Fukatsu, R., Watabe, S. I., Ohnuma, A., Teramura, K., Kimura, I., et al. (1990). Auditory sound agnosia without aphasia following a right temporal lobe lesion. Cortex, 26(2), 263–268.CrossRefGoogle Scholar
  19. Ghazanfar, A. A. (2002). Primate audition ethology and neurobiology. Boca Raton: CRC Press.CrossRefGoogle Scholar
  20. Harrington, I. A. (2002). Effect of auditory cortex lesions on discriminations of frequency change, amplitude change and sound location by Japanese Macaques (Macaca fuscata). Unpublished doctoral dissertation, University of Toledo.Google Scholar
  21. Heffner, H. E. (2005). The neurobehavioral study of auditory cortex. InThe Auditory Cortex: A Synthesis of Human and Animal Research (pp. 111–126). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  22. Heffner, H. E., & Heffner, R. S. (1986). Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalizations by Japanese Macaques. Journal of Neurophysiology, 56, 683–701.Google Scholar
  23. Hudspeth, A. J. (2003). Sensory transduction in the Ear. In E. R. Kandel, J. H. Schwartz, & T. M. Jes-sell (Eds.), Principles of neural science (pp. 614–624). New York: McGraw–Hill.Google Scholar
  24. Kaas, J. H. (2011). The evolution of auditory cortex: The core areas. In A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 407–427). New York: Springer.CrossRefGoogle Scholar
  25. Kaga, K. (2009). Central auditory pathway disorders. Tokyo: Springer Science & Business Media.CrossRefGoogle Scholar
  26. Kanwal, J. S., & Ehret, G. (2011). Communication sounds and their cortical representation. In A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 343–367). New York: Springer.CrossRefGoogle Scholar
  27. Kelly, J. B., & Phillips, D. P. (1991). Coding of interaural time differences of transients in auditory cortex of Rattus norvegicus: Implications for the evolution of mammalian sound localization. Hearing research, 55(1), 39–44.CrossRefGoogle Scholar
  28. Lenneberg, E. H. (1967). Biological foundations of language. New York: Wiley.Google Scholar
  29. Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.Google Scholar
  30. Lieberman, P. (2012). Vocal tract anatomy and the neural bases of talking. Journal of Phonetics, 40(4), 608–622.CrossRefGoogle Scholar
  31. Lieberman, P., & Crelin, E. S. (1971). On the speech of Neanderthal man. Linguist Inquiry, 2, 203–222.Google Scholar
  32. Lieberman, D. E., & McCarthy, R. C. (1999). The ontogeny of cranial base angulation in humans and chimpanzees and its implications for reconstructing pharyngeal dimensions. Journal of Human Evolution, 36(5), 487–517.CrossRefGoogle Scholar
  33. Lorenz, K. (1978). Vergleichende Verhaltensforschung. Grundlagen der Ethologie. Wien: Springer.CrossRefGoogle Scholar
  34. Minelli, A. (2007). Forme del divenire. Evo-devo: la Biologia Evoluzionistica dello Sviluppo. Torino: Einaudi.Google Scholar
  35. Mithen, S. (2005). Creativity in human evolution and prehistory. London: Routledge.Google Scholar
  36. Nearey, T. M. (1978). Vowel space normalization in synthetic stimuli. The Journal of the Acoustical Society of America, 63(S1), S5–S5.CrossRefGoogle Scholar
  37. Newman, J. D., & Wollberg, Z. (1973a). Multiple coding of species-specific vocalizations in the auditory cortex of squirrel monkeys. Brain research, 54, 287–304.CrossRefGoogle Scholar
  38. Newman, J. D., & Wollberg, Z. (1973b). Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Experimental neurology, 40(3), 821–824.CrossRefGoogle Scholar
  39. Pennisi, A. (2006). Patologie e psicopatologie del linguaggio. In A. Pennisi & P. Perconti (Eds.), Le scienze cognitive del linguaggio (pp. 175–250). Bologna: Il Mulino.Google Scholar
  40. Pennisi, A. (2012b). Diete per la mente. Ovvero: come astenersi dalle analogie e combatterne la pervasività per evitare la malattia mentale e la morte della creatività. In D. R. Hofstadter, Sulla coscienza, la creatività e il pensiero analogico, Pennisi & P. Perconti (eds.), Roma-Messina: Corisco, (pp. 113–137).Google Scholar
  41. Pennisi, A., & Falzone, A. (2010). Il prezzo del linguaggio. Evoluzione ed estinzione nelle scienze cognitive. Bologna: Il Mulino.Google Scholar
  42. Pennisi, A., & Falzone, A. (2014). Residuals of intelligent design in contemporary theories about language nature and origins. Humana. Mente, 27, 161–183.Google Scholar
  43. Petersen, M. R. (1982). The perception of species-specific vocalizations by primates: a conceptual framework. Primate communication, 171–211.Google Scholar
  44. Petersen, M. R., Beecher, M. D., Moody, D. B., & Stebbins, W. C. (1978). Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). Science, 202(4365), 324–327.CrossRefGoogle Scholar
  45. Pievani, T. (2005). Introduzione alla filosofia della biologia. Roma/Bari: Laterza.Google Scholar
  46. Poremba, A., Malloy, M., Saunders, R. C., Carson, R. E., Herscovitch, P., & Mishkin, M. (2004). Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature, 427(6973), 448–451.CrossRefGoogle Scholar
  47. Rauschecker, J. P. (1998). Parallel processing in the auditory cortex of primates. Audiology and Neurotology, 3(2-3), 86–103.CrossRefGoogle Scholar
  48. Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences, 97(22), 11800–11806.CrossRefGoogle Scholar
  49. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature neuroscience, 2(12), 1131–1136.CrossRefGoogle Scholar
  50. Syka, J., & Merzenich, M. M. (Eds.). (2005). Plasticity and signal representation in the auditory system. New York: Springer.Google Scholar
  51. Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293.CrossRefGoogle Scholar
  52. Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
  53. Vallortigara, G., & Bisazza, A. (2002). How ancient is brain lateralization? In R. J. Andrew & L. J. Rogers (Eds.), Comparative Vertebrate Lateralization (pp. 9–70). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Wang, X., Merzenich, M. M., Beitel, R., & Schreiner, C. E. (1995). Representation of a species–specific vocalization in the primary auditory cortex of the common Marmoset: Temporal and spectral characteristics. Journal of Neurophysiology, 74, 2685–2706.Google Scholar
  55. Winer, J. A., & Schreiner, C. (2011). The auditory cortex. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonino Pennisi
    • 1
  • Alessandra Falzone
    • 1
  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly

Personalised recommendations