Genetic Fundamentals

  • Antonino Pennisi
  • Alessandra Falzone
Part of the Perspectives in Pragmatics, Philosophy & Psychology book series (PEPRPHPS, volume 12)


The chapter is devoted to the description of the genetic foundations of language. From a close comparison with the positions of the CBM on FOXP2, updated through the findings of the latest experimental research, the DBM is also addressing the issues of fossilized variety of genes which have been attenuated, disappeared, modified or are completely new and that may have arisen from the historical evolution of Homo sapiens. The last part of the chapter is devoted to population genetics and the relationships that connect biological to cultural evolution.


Basal Ganglion Motor Pattern Vocal Tract Specific Language Impairment Amino Acid Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboitiz, F., Morales, D., & Montiel, J. (2003). The evolutionary origins of the mammalian isocortex: Towards an integrated developmental and functional approach. Behavioral and Brain Sciences, 26, 535–586.Google Scholar
  2. Alper, J. (2001). Sugar separates humans from Apes. Science, 291, 2340.CrossRefGoogle Scholar
  3. Baumeister, R. F. (2005). The cultural animal: Human nature, meaning, and social life. New York: Oxford University Press.CrossRefGoogle Scholar
  4. Berwick, R. C., & Chomsky, N. (2016). Why only us. Language and evolution. Cambridge, MA: The MIT Press.Google Scholar
  5. Biondi, G., & Rickards, O. (2006). In carne e ossa. DNA, cibo e culture dell’uomo preistorico. Roma: Laterza.Google Scholar
  6. Bisconti, M. (2008). Le culture degli altri animali. È Homo l’unico sapiens? Bologna: Zanichelli.Google Scholar
  7. Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Review Neuroscience, 11, 747–759.CrossRefGoogle Scholar
  8. Boncinelli, E. (2006). L’origine della forma vivente. L’evoluzione e l’origine dell’Uomo. Torino: Einaudi.Google Scholar
  9. Bonner, J. T. (1980). The evolution of culture in animals. Princeton: Princeton University Press.Google Scholar
  10. Carroll, S. B. (2006). The making of the fittest. DNA and the ultimate forensic record of evolution. New York: W.W. Norton & Company.Google Scholar
  11. Carroll, S. B. (2008). Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134(1), 25–36.CrossRefGoogle Scholar
  12. Cavalli-Sforza, L. L. (1996). Geni, popoli e lingue. Milano: Adelphi.Google Scholar
  13. Cavalli-Sforza, L. L. (2004). L’evoluzione della cultura. Proposte concrete per studi futuri. Milano: Codice.Google Scholar
  14. Chandrasekaran, B., Yi, H. G., Blanco, N. J., McGeary, J. E., & Maddox, W. T. (2015). Enhanced procedural learning of speech sound categories in a genetic variant of FOXP2. The Journal of Neuroscience, 35(20), 7808–7812.CrossRefGoogle Scholar
  15. Domínguez Alonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J., & Rowe, T. B. (2004). The Avian nature of the brain and inner ear of archaeopteryx. Nature, 431, 666–669.CrossRefGoogle Scholar
  16. Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology, 21, 415–424.CrossRefGoogle Scholar
  17. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–872.CrossRefGoogle Scholar
  18. Fee, M. S., & Scharff, C. (2010). The songbird as a model for the generation and learning of complex sequential behaviors. ILAR journal, 51(4), 362–377.CrossRefGoogle Scholar
  19. Ferland, R. J., Cherry, T. J., Preware, T. O., Morrisey, E. E., & Walsh, C. A. (2003). Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. Journal of Comparative Neurology, 460(2), 266–279.CrossRefGoogle Scholar
  20. Fitch, W. T. (2000). The evolution of speech: A comparative review. Trends in Cognitive Sciences, 7, 258–267.CrossRefGoogle Scholar
  21. Gopnik, M. (1990). Genetic basis of grammar deficit. Nature, 347, 26.CrossRefGoogle Scholar
  22. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  23. Green, R. E., Briggs, A. W., Krause, J., Prüfer, K., Burbano, H. A., Siebauer, M., et al. (2009). The Neandertal genome and ancient DNA authenticity. EMBO Journal, 28, 2494–2502.CrossRefGoogle Scholar
  24. Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P., & Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biology, 5(12), e321.CrossRefGoogle Scholar
  25. Hammerschmidt, K., Schreiweis, C., Minge, C., Pääbo, S., Fischer, J., & Enard, W. (2015). A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice. Genes, Brain and Behavior, 14(8), 583–590.CrossRefGoogle Scholar
  26. Hauser, M. D., & Ybarra, M. S. (1994). The role of lip configuration in monkey vocalizations: Experiments using xylocaine as a nerve block. Brain and Language, 46(2), 232–244.CrossRefGoogle Scholar
  27. Holland, M. S., & Holland, R. E. (2005). The cellular perspective on mammary gland development: stem/progenitor cells and beyond. Journal of dairy science, 88, E1–E8.CrossRefGoogle Scholar
  28. Hurst, J. A., Baraitser, M., Auger, E., Graham, F., & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine & Child Neurology, 32(4), 352–355.CrossRefGoogle Scholar
  29. Karten, H. J. (1997). Evolutionary developmental biology meets the brain: The origins of mammalian cortex. Proceedings of the National Academy of Sciences, 94(7), 2800–2804.CrossRefGoogle Scholar
  30. Konopka, G., & Roberts, T. F. (2016). Insights into the neural and genetic basis of vocal communication. Cell, 164(6), 1269–1276.CrossRefGoogle Scholar
  31. Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., et al. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current biology, 17(21), 1908–1912.CrossRefGoogle Scholar
  32. Kurt, S., Fisher, S. E., & Ehret, G. (2012). Foxp2 mutations impair auditory-motor association learning. PloS one, 7(3), e33130.CrossRefGoogle Scholar
  33. Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., et al. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes and development, 17(3), 368–379.CrossRefGoogle Scholar
  34. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519–523.CrossRefGoogle Scholar
  35. Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(11), 2455–2462.CrossRefGoogle Scholar
  36. Lieberman, P. (2001). Human language and our reptilian brain. Cambridge, MA: Harvard University Press.Google Scholar
  37. Lieberman, P. (2009). FOXP2 and human cognition. Cell, 137(5), 800–802.CrossRefGoogle Scholar
  38. Liégeois, F., Morgan, A. T., Connelly, A., & Vargha-Khadem, F. (2011). Endophenotypes of FOXP2: dysfunction within the human articulatory network. European journal of paediatric neurology, 15(4), 283–288.CrossRefGoogle Scholar
  39. Marcus, G. F., & Fisher, S. E. (2003). FOXP2 in focus: What can genes tell us about speech and language? Trends in cognitive sciences, 7(6), 257–262.CrossRefGoogle Scholar
  40. Mayr, E. (2004a). What makes biology unique? Consideration on the autonomy of a scientific discipline. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Mayr, E. (2004b). What makes biology unique? Considerations on the autonomy of a scientific discipline. New York: Cambridge University Press.CrossRefGoogle Scholar
  42. McGrew, W. C. (1992). Chimpanzee material culture: implications for human evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Morgan, A., Liégeois, F., & Vargha-Khadem, F.(2010). Motor speech profile in relation to site of brain pathology: A developmental perspective.In Speech motor control: New developments in basic and applied research (pp.95–115). Oxford: Oxford University Press.Google Scholar
  44. Nishikawa, K. C. (1997). Emergence of novel functions during brain evolution. Bioscience, 47(6), 341–354.CrossRefGoogle Scholar
  45. Pfenning, A. R., Hara, E., Whitney, O., Rivas, M. V., Wang, R., Roulhac, P. L., et al. (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 346(6215), 1256846.CrossRefGoogle Scholar
  46. Pinel, J. (2006). Biopsychology (VI ed.). Boston: Pearson.Google Scholar
  47. Ptak, S. E., Enard, W., Wiebe, V., Hellmann, I., Krause, J., Lachmann, M., & Pääbo, S. (2009). Linkage disequilibrium extends across putative selected sites in FOXP2. Molecular biology and evolution, 26(10), 2181–2184.CrossRefGoogle Scholar
  48. Reimers-Kipping, S., Hevers, W., Pääbo, S., & Enard, W. (2011). Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience, 175, 75–84.CrossRefGoogle Scholar
  49. Rotilio, G. (2006). L’alimentazione degli ominidi fino alla rivoluzione agropastorale del Neolitico. In Biondi, Martini, Rotilio & Rickards (Eds.), In carne ed ossa (pp 83–145). Roma-Bari: Laterza.Google Scholar
  50. Rowe, T. (1996). Coevolution of the mammalian middle ear and neocortex. Science, 273(5275), 651.CrossRefGoogle Scholar
  51. Scharff, C., & Haesler, S. (2005). An evolutionary perspective on FoxP2: strictly for the birds? Current opinion in neurobiology, 15(6), 694–703.CrossRefGoogle Scholar
  52. Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., et al. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences, 111(39), 14253–14258.CrossRefGoogle Scholar
  53. Schulz, S. B., Haesler, S., Scharff, C., & Rochefort, C. (2010). Knockdown of FoxP2 alters spine density in area X of the zebra finch. Genes, Brain and Behavior, 9(7), 732–740.CrossRefGoogle Scholar
  54. Sciote, J. J., Morris, T. J., Horton, M. J., Brandon, C. A., & Rosen, C. (2002). Unloaded shortening velocity and myosin heavy chain variations in human laryngeal muscle fibers. Annals of Otology, Rhinology and Laryngology, 111(2), 120–127.CrossRefGoogle Scholar
  55. Shettleworth, S. J. (2010). Cognition, evolution, and behavior. Oxford: Oxford University Press.Google Scholar
  56. Simeone, A., Puelles, E., & Acampora, D. (2002). The Otx family. Current opinion in genetics and development, 12(4), 409–415.CrossRefGoogle Scholar
  57. Simon, J. R., Stollstorff, M., Westbay, L. C., Vaidya, C. J., Howard, J. H., & Howard, D. V. (2011). Dopamine transporter genotype predicts implicit sequence learning. Behavioural brain research, 216(1), 452–457.CrossRefGoogle Scholar
  58. Somel, M., Franz, H., Yan, Z., Lorenc, A., Guo, S., Giger, T., et al. (2009). Transcriptional neoteny in the human brain. Proceedings of the National Academy of Sciences, 106(14), 5743–5748.CrossRefGoogle Scholar
  59. Somel, M., Liu, X., & Khaitovich, P. (2013). Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews Neuroscience, 14(2), 112–127.CrossRefGoogle Scholar
  60. Stedman, H. H., Kozyak, B. W., Nelson, A., Thesier, D. M., Su, L. T., Low, D. W., et al. (2004). Myosin gene mutation correlates with anatomical changes in the human lineage. Nature, 428(6981), 415–418.CrossRefGoogle Scholar
  61. Teramitsu, I., Kudo, L. C., London, S. E., Geschwind, D. H., & White, S. A. (2004). Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. The Journal of Neuroscience, 24(13), 3152–3163.CrossRefGoogle Scholar
  62. Tsui, D., Vessey, J. P., Tomita, H., Kaplan, D. R., & Miller, F. D. (2013). FoxP2 regulates neurogenesis during embryonic cortical development. The Journal of Neuroscience, 33(1), 244–258.CrossRefGoogle Scholar
  63. Vallender, E. J., Mekel-Bobrov, N., & Lahn, B. T. (2008). Genetic basis of human brain evolution. Trends in neurosciences, 31(12), 637–644.CrossRefGoogle Scholar
  64. Vargha-Khadem, F., Gadian, D. G., Copp, A., & Mishkin, M. (2005). FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 6(2), 131–138.CrossRefGoogle Scholar
  65. Wainszelbaum, M. J., Liu, J., Kong, C., Srikanth, P., Samovski, D., Su, X., & Stahl, P. D. (2012). TBC1D3, a hominoid-specific gene, delays IRS-1 degradation and promotes insulin signaling by modulating p70 S6 kinase activity. PloS one, 7(2), e31225.CrossRefGoogle Scholar
  66. Watkins, K. E., Vargha-Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., et al. (2002a). MRI analysis of an inherited speech and language disorder: Structural brain abnormalities. Brain, 125(3), 465–478.CrossRefGoogle Scholar
  67. Watkins, K. E., Dronkers, N. F., & Vargha-Khadem, F. (2002b). Behavioural analysis of an inherited speech and language disorder: Comparison with acquired aphasia. Brain, 125(3), 452–464.CrossRefGoogle Scholar
  68. Zahavi, A. (1975). Mate selection: A selection for a handicap. Journal of theoretical Biology, 53(1), 205–214.CrossRefGoogle Scholar
  69. Zhang, J., Webb, D. M., & Podlaha, O. (2002). Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. Genetics, 162(4), 1825–1835.Google Scholar
  70. Zhu, J., Sanborn, J. Z., Diekhans, M., Lowe, C. B., Pringle, T. H., & Haussler, D. (2007). Comparative genomics search for losses of long-established genes on the human lineage. PLoS Comput Biol, 3(12), e247.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonino Pennisi
    • 1
  • Alessandra Falzone
    • 1
  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly

Personalised recommendations