Bio-Linguistic Plasticity and Origin of Language

  • Antonino Pennisi
  • Alessandra Falzone
Part of the Perspectives in Pragmatics, Philosophy & Psychology book series (PEPRPHPS, volume 12)


This chapter is devoted to the application of knowledge on functional and, in particular, evolutionary plasticity, these being two of the most important issues concerning biolinguistics. On the basis of the previous chapter, we have summarized a scheme consisting of four levels of evolutionary innovation processes: (1) the level of the “mechanical trigger" of innovation; (2) the level of performative innovation compatibility in the context of evolutionary development of the structure; (3) the level of natural selection within population genetics; (4) the level of adaptation and cultural selection. These four levels are considered in subsections on the origin of language, the development of historical-natural languages, language selection, the mechanisms of adaptation/maladaptation of cultural products and possible (but not certain) developmental outcomes.


Nonhuman Primate Mirror Neuron Hyoid Bone Human Language Mechanical Trigger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackermann, H., Hage, S. R., & Ziegler, W. (2014). Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective. Behavioral and Brain Sciences, 37, 529–604.CrossRefGoogle Scholar
  2. Aiello, L., & Dean, C. (2002). An introduction to human evolutionary anatomy. New York: Academic Press.Google Scholar
  3. Aitchison, J. (2006). The Articulate Mammal. New York: Routledge.Google Scholar
  4. Alroy, J. (1998). Equilibrial diversity dynamics in North American Mammals. In M. L. McKinney & J. Drake (Eds.), (pp 232–287). New York: Columbia University Press.Google Scholar
  5. Ankel-Simon, F. (2007). Primate anatomy. An introduction. New York: Academic Press.Google Scholar
  6. Arbib, M. A. (2002). The mirror system, imitation, and the evolution of language. In C. Nehaniv & K. Dautenhahn (Eds.), Imitation in animals and artifacts. Cambridge: The MIT Press.Google Scholar
  7. Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28, 105–167.Google Scholar
  8. Arbib, M. A. (2006). Action to language via the mirror neuron system. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Arbib, M. A. (2012). How the brain got language. The mirror system hypothesis. New York: Oxford University Press.CrossRefGoogle Scholar
  10. Arbib, M. A. (2016). Your soul is a distributed property of the brains of yourself and others, RSL. Italian Journal of Cognitive Science, 3(1), 5–30.Google Scholar
  11. Arbib, M. A., Liebal, K., & Pika, S. (2008). Primate vocalization, gesture, and the evolution of human language. Current Anthropology, 49(6), 1053–1076.CrossRefGoogle Scholar
  12. Armstrong, D. F. (1999). Original signs: Gesture, sign, and the sources of language. Washington, DC: Gallaudet University Press.Google Scholar
  13. Armstrong, D. F., & Wilcox, S. E. (2007). The gestural origin of language. New York: Oxford University Press.CrossRefGoogle Scholar
  14. Armstrong, D. F., Stokoe, W. C., & Wilcox, S. E. (1994). Signs of the origin of syntax. Current Anthropology, 35(4), 349–368.CrossRefGoogle Scholar
  15. Baber, C. (2003). Cognition and tool use. Forms of engagement in human and animal use of tools. London: Taylor and Francis.CrossRefGoogle Scholar
  16. Bekoff, M., Allen, C., & Burghardt, M. (2002). The cognitive animal. Empirical and theoretical perspectives on animal cognition. Cambridge, MA: The MIT Press.Google Scholar
  17. Belyk, M., & Brown, S. (2014). Somatotopy of the extrinsic laryngeal muscles in the human sensorimotor cortex. Behavioural and Brain Research, 270, 364–371.CrossRefGoogle Scholar
  18. Benton, M. J. (2002). Cope’s rule. In M. Pagel (Ed.), Encyclopedia of evolution (pp. 209–210). Oxford: Oxford University Press.Google Scholar
  19. Berwick, R. C., & Chomsky, N. (2016). Why only us. Language and evolution. Cambridge, MA: The MIT Press.Google Scholar
  20. Bickerton, D. (2003). Symbol and structure: A comprehensive framework for language evolution. In M. H. Christiansen & S. Kirby (Eds.), Language evolution (pp. 77–93). Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Bickerton, D. (2014). More than nature need. Language, mind, and evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  22. Birkhead, T. R., & Møller, A. P. (1998). Sperm competition and sexual selection. San Diego: Academic Press.Google Scholar
  23. Biro, D., & Matsuzawa, T. (2001). Chimpanzee numerical competence: Cardinal and ordinal skills. In T. Matsuzawa (Ed.), Primate origins of human cognition and behavior (pp. 199–225). Springer: Tokyo.Google Scholar
  24. Boë, L. J., Maeda, S., & Heim, J.-L. (1999). Neanderthal man was not morphologically handicapped for speech. Evolution of Communication, 3, 49–77.Google Scholar
  25. Boë, L. J., Heim, J. L., Honda, K., & Maeda, S. (2002). The potential Neandertal vowel space was as large as that of modern humans. Journal of Phonetics, 20, 465–484.CrossRefGoogle Scholar
  26. Boë, L. J., Heim, J. L., Honda, K., Maeda, S., Badin, P., & Abry, C. (2007). The vocal tract of newborn humans and Neanderthals: Acoustic capabilities and consequences for the debate on the origin of language. A reply to Lieberman (2007a). Journal of Phonetics, 35, 564–681.CrossRefGoogle Scholar
  27. Boeckx, C. (2011). Biolinguistics: A brief guide for the perplexed. Language Science, 5, 449–463.Google Scholar
  28. Bouchard, D. (2013). The nature and origin of language. New York: Oxford University Press.CrossRefGoogle Scholar
  29. Brown, S., Ngan, E., & Liotti, M. (2008). A larynx area in the human motor cortex. Cerebral Cortex, 18(4), 837–845.CrossRefGoogle Scholar
  30. Brown, S., Laird, A. R., Pfordresher, P. Q., Thelen, S. M., Turkeltaub, P., & Liotti, M. (2009). The somatotopy of speech. Phonation and articulation in the human motor cortex. Brain and Cognition, 70, 31–41.CrossRefGoogle Scholar
  31. Cartei, V., & Reby, D. (2013). Effect of formant frequency spacing on perceived gender in pre-pubertal children’s voices. PLoS ONE, 8(12), e81022.CrossRefGoogle Scholar
  32. Cartei, V., Wind Cowles, H., & Reby, D. (2012). Spontaneous voice gender imitation abilities in adult speakers. PLoS ONE, 7(2), e31353.CrossRefGoogle Scholar
  33. Cheney, D. L., & Seyfarth, R. M. (1985). Vervet monkey alarm calls: Manipulation through shared information? Behaviour, 94(1/2), 150–166.CrossRefGoogle Scholar
  34. Cheney, D. L., & Seyfarth, R. M. (1997). Why animals don’t have language. The Tanner Lectures on Human Values, 19, 173–210.Google Scholar
  35. Cheney, D. L., & Seyfarth, R. M. (2005). Constraints and preadaptations in the earliest stages of language evolution. The Linguistic Review, 22, 135–159.CrossRefGoogle Scholar
  36. Christiansen, M. H., & Chater, N. (2008a). Language as shaped by the brain. Behavioral and Brain Sciences, 31, 489–558.Google Scholar
  37. Christiansen, M. H., & Chater, N. (2008b). The language faculty that wasn’t: A usage-based account of natural language recursion. Frontiers in Psychology, 6(1182), 1–18.Google Scholar
  38. Christiansen, M. H., & Kirby, S. (2003a). Language evolution: Consensus and controversies. TRENDS in Cognitive Sciences, 7(7), 300–307.CrossRefGoogle Scholar
  39. Christiansen, M. H., & Kirby, S. (2003b). Language evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Corballis, M. C. (1999). Cerebral asymmetry: Motoring on. TRENDS in Cognitive Sciences, 2(4), 152–157.CrossRefGoogle Scholar
  41. Corballis, M. C. (2002). From hand to mouth. Princeton: Princeton Univerisity Press.Google Scholar
  42. Corballis, M. C. (2003). Out on a Limb: A reply to Bradshaw’s review of from hand to mouth. Laterality: Asymmetries of Body, Brain and Cognition, 8(2), 195–200.Google Scholar
  43. Corballis, M. C. (2015). The wandering mind. What the brain does when you’re not looking. Chicago: University Of Chicago Press.CrossRefGoogle Scholar
  44. Crockford, C., Wittig, R. M., Mundry, R., & Zuberbühler, K. (2012). Wild Chimpanzees inform ignorant group members of danger. Current Biology, 22, 142–146.CrossRefGoogle Scholar
  45. Cunningham, E. T., & Sawchenko, P. E. (2000). Dorsal medullary pathways subserving oromotor reflexes in the rat: Implications for the central neural control of swallowing. Journal Comparative Neurology, 417, 448–466.CrossRefGoogle Scholar
  46. Davidson, T. M. (2003). The great leap forward: The anatomic basis for the acquisition of speech and obstructive sleep apnea. Sleep Medicine, 4, 185–194.CrossRefGoogle Scholar
  47. De Mauro, T. (1980). Minisemantica. Roma: Laterza.Google Scholar
  48. Deacon, T. W. (1989). The neural circuitry underlying primate calls and human language. Journal of Human Evolution, 4, 367–401.CrossRefGoogle Scholar
  49. Deacon, T. W. (1997). The symbolic species. The co-evolution of language and the human brain. New York: W. W. Norton & Company.Google Scholar
  50. Deacon, T. W. (2003). Universal grammar and semiotic constraints. In M. H. Christiansen & S. Kirby (Eds.), Language evolution (pp. 111–139). Oxford: Oxford University Press.CrossRefGoogle Scholar
  51. Diogo, R., & Wood, B. (2012). Violation of Dollo’s law. Evidence of muscle reversions in primate phylogeny and their implications for the understanding of the ontogeny, evolution, and anatomical variations of modern humans. Evolution, 66(10), 3267–3276.CrossRefGoogle Scholar
  52. Donald, M. (1991). Origins of the modern mind three stages in the evolution of culture and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  53. Donald, M. (2005). Imitation and mimesis. In S. L. Hurley & N. Chater (Eds.), Perspectives on imitation: Mechanisms of imitation and imitation in animals (pp. 283–300). Cambridge, MA: The MIT Press.Google Scholar
  54. Dunbar, R. (1996). Grooming, gossip and the evolution of Language. Cambridge: Harvard University Press.Google Scholar
  55. Dunbar, R. I. (1998). The social brain hypothesis. Brain, 9(10), 178–190.Google Scholar
  56. Dunbar, R. I., & Shultz, S. (2007). Evolution in the social brain. Science, 317(5843), 1344–1347.CrossRefGoogle Scholar
  57. Dunn, J. C., Halenar, L. B., Davies, T. G., Cristobal-Azkarate, J., Reby, D., Sykes, D., et al. (2015). Evolutionary trade-off between vocal tract and testes dimensions in howler monkeys. Current Biology, 25(21), 2839–2844.CrossRefGoogle Scholar
  58. Edelman, G. M. (1992). Bright air, brilliant fire. On the matter of the mind. New York: Basic Books.Google Scholar
  59. Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303–306.CrossRefGoogle Scholar
  60. Falzone, A. (2012). Evoluzionismo e comunicazione. Nuove ipotesi sulla selezione naturale nei linguaggi animali e umani. Roma: Corisco.Google Scholar
  61. Feinberg, D. R. (2008). Are human faces and voices ornaments signaling common underlying cues to mate value? Evolutionary Anthropology: Issues, News, and Reviews, 17, 112–118.CrossRefGoogle Scholar
  62. Ferretti, F. (2007). Perché non siamo speciali. Mente, linguaggio e natura umana. Laterza: Roma-Bari.Google Scholar
  63. Ferretti, F. (2010). Alle origini del linguaggio umano: il punto di vista evoluzionistico. Roma: Laterza.Google Scholar
  64. Fitch, W. T. (2000). The evolution of speech: A comparative review. Trends in Cognitive Sciences, 7, 258–267.CrossRefGoogle Scholar
  65. Fukushima, M., Saunders, R.C., Fujii, N., Averbeck, B.B., & Mishkin, M. (2014). Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey. In 36th Annual international conference of the IEEE engineering in medicine and biology society, IEEE, (pp. 6794–6797).Google Scholar
  66. Galis, F., Arntzen, J. W., & Lande, R. (2010). Dollo’s law and the irreversibility of digit loss in Bachia. Evolution, 64(8), 2466–2476.Google Scholar
  67. Gamba, M. (2014). Vocal tract-related cues across human and nonhuman signals. RSL. Italian Journal of Cognitive Science, 1(1), 49–68.Google Scholar
  68. Gamba, M., Friard, O., & Giacoma, C. (2012). Vocal tract morphology determines species-specific features in vocal signals of lemurs (Eulemur). International Journal of Primatology, 33, 1453–1466.CrossRefGoogle Scholar
  69. Gaston, K. J., Blackburn, T. M., & Lawton, J. H. (1998). Aggregation and the interspecific abundance-occupancy relationship. Journal of Animal Ecology, 67, 995–999.CrossRefGoogle Scholar
  70. Gentilucci, M., & Corballis, M. C. (2006). From manual gesture to speech: A gradual transition. Neuroscience and Biobehavioral Reviews, 30(7), 949–960.CrossRefGoogle Scholar
  71. Genty, E., Clay, Z., Hobaiter, C., & Zuberbühler, K. (2014). Multi-modal use of a socially directed call in bonobos. PloS one, 9(1), e84738.CrossRefGoogle Scholar
  72. Ghazanfar, A. A., & Rendall, D. (2008). Evolution of human vocal production. Current Biology, 18(11), R457–R460.CrossRefGoogle Scholar
  73. Goldberg, E. E., & Igić, B. (2008). On phylogenetic tests of irreversible evolution. Evolution, 62(11), 2727–2741.CrossRefGoogle Scholar
  74. Gomez, J. C. (2004). Apes monkeys children and the growth of mind the developing child. Cambridge, MA: Harvard University Press.Google Scholar
  75. Greenspan, S. I., & Shanker, S. G. (2004). The first idea. How symbols, language and intelligence evolved from our primate ancestors to modern humans. Cambridge, MA: Da Capo Press.Google Scholar
  76. Hage, S. R., & Nieder, A. (2013). Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nature Communications, 4, 2409.CrossRefGoogle Scholar
  77. Hage, S. R., & Nieder, A. (2015). Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex. The Journal of Neuroscience, 35(18), 7030–7040.CrossRefGoogle Scholar
  78. Hewes, G. W. (1973). Primate communication and the gestural origin of language. Current Anthropology, 14, 5–24.CrossRefGoogle Scholar
  79. Hickok, G. (2014). The myth of mirror neurons: The real neuroscience of communication and cognition. New York: WW Norton & Company.Google Scholar
  80. Hone, D. W., & Benton, M. J. (2005). The evolution of large size: How does Cope’s rule work? Trends in Ecology and Evolution, 20(1), 4–6.CrossRefGoogle Scholar
  81. Hopkins, W. D. (Ed.). (2007). The evolution of hemispheric specialization in primates (Vol. 5). Amsterdam: Elsevier.Google Scholar
  82. Hopkins, W. D., Taglialatela, J. P., & Leavens, D. A. (2007). Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Animal behaviour, 73(2), 281–286.CrossRefGoogle Scholar
  83. Hughes, S. M., Farley, S. D., & Rhodes, B. C. (2010). Vocal and physiological changes in response to the physical attractiveness of conversational partners. Journal of Nonverbal Behavior, 34(3), 155–167.CrossRefGoogle Scholar
  84. Hughes, S. M., Mogilski, J. K., & Harrison, M. A. (2014). The perception and parameters of intentional voice manipulation. Journal of Nonverbal Behavior, 38(1), 107–127.CrossRefGoogle Scholar
  85. Hurford, J. R. (2008). Niche-construction, co-evolution, and domain-specificity. Behavioral and Brain Sciences, 31(05), 526–526.CrossRefGoogle Scholar
  86. Hurford, J. R. (2014). Origins of language: A slim guide. Oxford: Oxford University Press.Google Scholar
  87. Hurley, S. L., & Nudds, M. (2006). Rational animals? Oxford: Oxford University Press.CrossRefGoogle Scholar
  88. Iacoboni, M. (2008). The role of premotor cortex in speech perception: Evidence from fmri and rtms. Journal of Physiology-Paris, 102(1), 31–34.CrossRefGoogle Scholar
  89. Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H., & Toyokura, Y. (1990). Corticofugal projections to the motor nuclei of the brain stem and spinal cord in humans. Neurology, 40, 309–312.CrossRefGoogle Scholar
  90. Jürgens, U. (1974). On the elicitability of vocalization from the cortical larynx area. Brain Research, 81, 564–566.CrossRefGoogle Scholar
  91. Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice, 23(1), 1–10.CrossRefGoogle Scholar
  92. Jürgens, U., Kirzinger, A., & Von Cramon, D. (1982). The effects of deep-reaching lesions in the cortical face area on phonation a combined case report and experimental monkey study. Cortex, 18(1), 125–139.CrossRefGoogle Scholar
  93. Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: Evidence for ‘fast mapping’. Science, 304, 1682–1683.CrossRefGoogle Scholar
  94. Kempe, V., Puts, D. A., & Cárdenas, R. A. (2013). Masculine men articulate less clearly. Human Nature, 24(4), 461–475.CrossRefGoogle Scholar
  95. Kendon, A. (2002). Historical observations on the relationship between research on sign languages and language origins theory. In D. F. Armstrong, M. Karchmer, & J. V. Van Cleve (Eds.), The study of signed languages: Essays in honor of William Stokoe (pp. 13–34). Washington: Gallaudet University.Google Scholar
  96. Kingsolver, J. G., & Pfennig, D. W. (2004). Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution, 58(7), 1608–1612.CrossRefGoogle Scholar
  97. Kirby, S. (1999). Function, selection, and innateness: The emergence of language universals. Oxford: Oxford University Press.Google Scholar
  98. Kirby, S. (2002). Learning, Bottlenecks and the Evolution of Recursive Syntax. In T. Briscoe (Ed.), Linguistic evolution through language acquisition: Formal and computational models (pp. 173–203). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  99. Klofstad, C. A., Anderson, R. C., & Nowicki, S. (2015). Perceptions of competence, strength, and age influence voters to select leaders with lower-pitched voices. PloS one, 10(8), e0133779.CrossRefGoogle Scholar
  100. Kubota, S. (2001). The extinction program for Homo sapiens and cloning humans: Trinucleotide expansion as a one-way track to extinction. Medical hypotheses, 56(3), 296–301.CrossRefGoogle Scholar
  101. Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.CrossRefGoogle Scholar
  102. Kuypers, H. G. J. M. (1958). Corticobulbar connexions to the pons and lower brain-stem in man. Brain, 81(3), 364–388.CrossRefGoogle Scholar
  103. Lameira, A. R., Hardus, M. E., Kowalsky, B., de Vries, H., Spruijt, B. M., Sterck, E. H., et al. (2013). Orangutan (Pongo spp.) whistling and implications for the emergence of an open-ended call repertoire: A replication and extension. The Journal of the Acoustical Society of America, 134(3), 2326–2335.CrossRefGoogle Scholar
  104. Lameira, A. R., Hardus, M. E., Bartlett, A. M., Shumaker, R. W., Wich, S. A., & Menken, S. B. (2015). Speech-like rhythm in a voiced and voiceless orangutan call. PloS one, 10(1), e116136.CrossRefGoogle Scholar
  105. Laporte, M. N., & Zuberbühler, K. (2010). Vocal greeting behaviour in wild chimpanzee females. Animal Behaviour, 80(3), 467–473.CrossRefGoogle Scholar
  106. Leongómez, J. D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., & Roberts, S. C. (2014). Vocal modulation during courtship increases proceptivity even in naive listeners. Evolution and Human Behavior, 35(6), 489–496.CrossRefGoogle Scholar
  107. Lévi-Strauss, C. (1955). Tristes tropiques. Paris: PLON.Google Scholar
  108. Levinson, S. C. (2016). Turn-taking in human communication. Origins and implications for language processing. Trends in cognitive sciences, 20(1), 6–14.CrossRefGoogle Scholar
  109. Lieberman, P. (2008). A wild 50,000-year ride. InHot pursuit of language in prehistory. Essays in the four fields of anthropology in honor of Harold Crane Fleming (pp. 359–371). Amsterdam/Philadelphia: John Benjamins.CrossRefGoogle Scholar
  110. Lieberman, P. (2012). Vocal tract anatomy and the neural bases of talking. Journal of Phonetics, 40(4), 608–622.CrossRefGoogle Scholar
  111. Lieberman, P., & McCarthy, R. (2007). Tracking the evolution of language and speech: Comparing vocal tracts to identify speech capabilities. Expedition: The magazine of the University of Pennsylvania, 49(2), 15–20.Google Scholar
  112. Lonsdorf, E. V., Ross, S. R., & Matsuzawa, T. (2010). The mind of the Chimpanzee. Ecological and experimental perspectives. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  113. Lorenz, K. (1973a). Die acht Todsünden der zivilisierten Menschheit. München: Piper.Google Scholar
  114. Lorenz, K. (1983). Der Abbau des Menschlichen. München: Piper.Google Scholar
  115. Loucks, T. M., Poletto, C. J., Simonyan, K., Reynolds, C. L., & Ludlow, C. L. (2007). Human brain activation during phonation and exhalation: Common volitional control for two upper airway functions. Neuroimage, 36(1), 131–143.CrossRefGoogle Scholar
  116. MacWhinney, B. (2008). Cognitive precursors to language. In Oller, D. K., & Griebel, U. (2008), 193–215.Google Scholar
  117. Marks, J. (2003). What it means to be 98% chimpanzee: Apes, people, and their genes. Univ of California Press.Google Scholar
  118. Matsuzawa, T. (2007). Comparative cognitive development. Developmental science, 10(1), 97–103.CrossRefGoogle Scholar
  119. Matsuzawa, T., Tomonaga, M., & Tanaka, M. (2006). Cognitive development in chimpanzees. Tokyo: Springer.CrossRefGoogle Scholar
  120. Meguerditchian, A., & Vauclair, J. (2008). Vocal and gestural communication in nonhuman primates and the question of the origin of language. Learning from animals, 61–85.Google Scholar
  121. Meguerditchian, A., & Vauclair, J. (2010). Investigation of gestural vs vocal origins of language in nonhuman primates: Distinguishing comprehension and production of signals. In S. A., S. M., & S. K. de Boer (Eds.), The evolution of language (pp. 453–454). Singapore: World Scientific.CrossRefGoogle Scholar
  122. Milojevic, B., & Hast, M. H. (1964). Cortical motor centers of the Laryngeal muscles in the Cat and Dog. The Annals of otology, rhinology, and laryngology, 73, 979–988.CrossRefGoogle Scholar
  123. Mithen, S. J. (2006). The singing Neanderthals: The origins of music, language, mind, and body. Cambridge, MA: Harvard University Press.Google Scholar
  124. Moon, C., Lagercrantz, H., & Kuhl, P. K. (2013). Language experienced in utero affects vowel perception after birth: A two-country study. Acta Paediatrica, 102(2), 156–160.CrossRefGoogle Scholar
  125. Morais, J., Bertelson, P., Cary, L., & Alegria, J. (1986). Literacy training and speech segmentation. Cognition, 24(1), 45–64.CrossRefGoogle Scholar
  126. Muller, G. B., & Wagner, G. P. (1991). Novelty in evolution: restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.CrossRefGoogle Scholar
  127. O’Connor, J. J., Pisanski, K., Tigue, C. C., Fraccaro, P. J., & Feinberg, D. R. (2014). Perceptions of infidelity risk predict women’s preferences for low male voice pitch in short-term over long-term relationship contexts. Personality and Individual differences, 56, 73–77.CrossRefGoogle Scholar
  128. Pagel, M. (2009). Human language as a culturally transmitted replicator. Nature Reviews Genetics, 10(6), 405–415.Google Scholar
  129. Pagel, M. D. (2012). Wired for culture: The natural history of human cooperation. London: Allen Lane.Google Scholar
  130. Paget, R. (1930). Human speech: Some observations, experiments, and conclusions as to the nature, origin, purpose and possible improvement of human speech. London/New York: K. Paul, Trench, Trubner & Co., Ltd/Harcourt, Brace & Company.Google Scholar
  131. Penfield, W., & Roberts, L. (1959). Speech and brain-mechanisms. Princeton: Princeton University Press.Google Scholar
  132. Pennisi, A. (2014a). L’errore di Platone. InBiopolitica, linguaggio e diritti civili in tempi di crisi. Bologna: Il Mulino.Google Scholar
  133. Pennisi, A. (2014b). La tecnologia del linguaggio tra passato e presente. Blitiry, II(2), 195–220.Google Scholar
  134. Pennisi, A., & Falzone, A. (2010). Il prezzo del linguaggio. Evoluzione ed estinzione nelle scienze cognitive. Bologna: Il Mulino.Google Scholar
  135. Peters, R. H. (1983). The Ecological Implications of Body Size. New York: Cambridge University Press.CrossRefGoogle Scholar
  136. Pisanski, K., & Bryant, G. A. (2016). The evolution of voice perception. In N. S. Eidsheim & K. L. Meizel (Eds.), The. Oxford Handbook of Voice Studies. Oxford: Oxford University Press (in press).Google Scholar
  137. Pisanski, K., Cartei, V., McGettigan, C., Raine, J., & Reby, D. (2016). Voice modulation: A window into the origins of human vocal control? Trends in cognitive sciences, 20(4), 304–318.CrossRefGoogle Scholar
  138. Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and brain sciences, 1(04), 515–526.CrossRefGoogle Scholar
  139. Preuss, T. M. (2004). What is it like to be human? In M. Gazzaniga (Ed.), The cognitive neurosciences III (pp. 5–22). Cambridge, MA: The MIT Press.Google Scholar
  140. Puts, D. A., Gaulin, S. J., & Verdolini, K. (2006). Dominance and the evolution of sexual dimorphism in human voice pitch. Evolution and Human Behavior, 27(4), 283–296.CrossRefGoogle Scholar
  141. Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.Google Scholar
  142. Rödel, R. M., Olthoff, A., Tergau, F., Simonyan, K., Kraemer, D., Markus, H., & Kruse, E. (2004). Human cortical motor representation of the larynx as assessed by transcranial magnetic stimulation (TMS). The Laryngoscope, 114(5), 918–922.CrossRefGoogle Scholar
  143. Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K., & Slocombe, K. E. (2013). Chimpanzee alarm call production meets key criteria for intentionality. PLoS One, 8(10), e76674.CrossRefGoogle Scholar
  144. Schoenemann, P. T. (1999). Syntax as an emergent characteristic of the evolution of semantic complexity. Minds and Machines, 9(3), 309–346.CrossRefGoogle Scholar
  145. Seyfarth, R. M., & Cheney, D. L. (2010). Production, usage, and comprehension in animal vocalizations. Brain and language, 115(1), 92–100.CrossRefGoogle Scholar
  146. Simonyan, K., & Horwitz, B. (2011). Laryngeal motor cortex and control of speech in humans. The Neuroscientist, 2, 197–208.CrossRefGoogle Scholar
  147. Simonyan, K., & Jürgens, U. (2002). Cortico-cortical projections of the motorcortical larynx area in the rhesus monkey. Brain research, 949(1), 23–31.CrossRefGoogle Scholar
  148. Simonyan, K., & Jürgens, U. (2005a). Afferent cortical connections of the motor cortical larynx area in the rhesus monkey. Neuroscience, 130(1), 133–149.CrossRefGoogle Scholar
  149. Simonyan, K., & Jürgens, U. (2005b). Afferent subcortical connections into the motor cortical larynx area in the rhesus monkey. Neuroscience, 130(1), 119–131.CrossRefGoogle Scholar
  150. Simonyan, K., Ostuni, J., Ludlow, C. L., & Horwitz, B. (2009). Functional but not structural networks of the human laryngeal motor cortex show left hemispheric lateralization during syllable but not breathing production. The Journal of Neuroscience, 29(47), 14912–14923.CrossRefGoogle Scholar
  151. Smith, A. B. (2007). Marine diversity through the phanerozoic: Problems and prospects. Journal of the Geological Society, 164(4), 731–745.CrossRefGoogle Scholar
  152. Steele, J., Ferrari, P. F., & Fogassi, L. (2012). From action to language: Comparative perspectives on primate tool use, gesture and the evolution of human language. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1585), 4–9.CrossRefGoogle Scholar
  153. Stevens, K. N. (1972). The quantal nature of speech: Evidence from articulatory acoustic data. In E. E. David Jr. & P. B. Denes (Eds.), Human communication: A unified view (pp. 51–66). New York: McGraw-Hill.Google Scholar
  154. Sutton, D., Larson, C., & Lindeman, R. C. (1974). Neocortical and limbic lesion effects on primate phonation. Brain research, 71(1), 61–75.CrossRefGoogle Scholar
  155. Taglialatela, J. P., Savage-Rumbaugh, S., & Baker, L. A. (2003). Vocal production by a language-competent Pan paniscus. International Journal of Primatology, 24(1), 1–17.CrossRefGoogle Scholar
  156. Tallerman, M. (2014). No syntax saltation in language evolution. Language Sciences, 46, 207–219.CrossRefGoogle Scholar
  157. Taylor, J. (2009). Not a chimp: The hunt to find the genes that make us human. Oxford: Oxford University Press.Google Scholar
  158. Thompson, R. K. (1995). Natural and relational concepts in animals. Comparative approaches to cognitive science, 175, 224.Google Scholar
  159. Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
  160. Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.Google Scholar
  161. Tomasello, M. (2008). Origins of human communication. Cambridge, MA: The MIT Press.Google Scholar
  162. Tomasello, M. (2014). A natural history of human thinking. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  163. Tomasello, M., & Call, J. (1997). Primate cognition. New York: Oxford University Press.Google Scholar
  164. Tomasello, M., & Call, J. (2011). Do chimpanzees know what others see – Or only what they are looking at? In Hurley & Nudds (Eds.), (pp 541–565).Google Scholar
  165. Tomasello, M., & Zuberbühler, K. (2002). Primate vocal and gestural communication. In M. Beckoff, C. S. Allen, & G. Burghardt (Eds.), The cognitive animal: Empirical and theoretical perspectives on animal cognition (pp. 293–299). Cambridge, MA: MIT Press.Google Scholar
  166. Wasserman, E. A., & Zentall, T. R. (2006). Comparative cognition: Experimental explorations of animal intelligence. Oxford: Oxford University Press.Google Scholar
  167. Wilson, E. O. (2012). The social conquest of earth. New York: Liveright Pub. Corp.Google Scholar
  168. Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Animal Behaviour, 61(6), 1203–1216.CrossRefGoogle Scholar
  169. Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature neuroscience, 7(7), 701–702.CrossRefGoogle Scholar
  170. Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2007). Chimpanzees (Pan troglodytes) modify grouping and vocal behaviour in response to location-specific risk. Behaviour, 144(12), 1621–1653.CrossRefGoogle Scholar
  171. Wundt, W. (1900). Die Sprache (Vol. 2). Leipzig: Enghelman.Google Scholar
  172. Zahavi, A., & Zahavi, A. (2007). The handicap principle: A missing piece of Darwin’s puzzle. New York-Oxford: Oxford University Press.Google Scholar
  173. Zeki, S., & Nash, J. (1999). Inner vision: An exploration of art and the brain. Oxford: Oxford University Press.Google Scholar
  174. Zlatev, J. (2008). From proto-mimesis to language: Evidence from primatology and social neuroscience. Journal of Physiology-Paris, 102(1), 137–151.CrossRefGoogle Scholar
  175. Zuberbühler, K. (2005). The phylogenetic roots of language. Evidence from primate. Communication and Cognition, 14(3), 126–130.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonino Pennisi
    • 1
  • Alessandra Falzone
    • 1
  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly

Personalised recommendations