Functional Plasticity

  • Antonino Pennisi
  • Alessandra Falzone
Part of the Perspectives in Pragmatics, Philosophy & Psychology book series (PEPRPHPS, volume 12)


In this chapter, the authors discuss both the physiological structures of brain plasticity and the pathological structures that reveal unknown aspects of brain plasticity. In particular, they consider the ontogenetic development of neurocerebral processes by detecting the relationship between genetic constraints and the possible variables related to developmental processes. The relationship between physiology and pathology, synesthetic integration and the neotenic nature of the human brain, which should foster more opportunities for functional plasticity, is emphasized


Genetic Program Auditory Cortex Brain Organization Brain Plasticity Afferent Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bufill, E., Agustì, J., & Blesa, R. (2011). Human neoteny revisited: The case of synaptic plasticity. American Journal of Human Biology, 23, 729–739.CrossRefGoogle Scholar
  2. Condé, F., Lund, J. S., & Lewis, D. A. (1996). The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Developmental brain research, 96(1), 261–276.CrossRefGoogle Scholar
  3. Edelman, G. M. (1987). Neural Darwinism. The theory of neural group selection. New York: Basic Books.Google Scholar
  4. Flore, G., Di Ruberto, G., Parisot, J., Sannino, S., Russo, F., Illingworth, E. A., Studer, M. & De Leonibus, E. (2016). Gradient COUP-TFI expression is required for functional organization of the hippocampal septo-temporal longitudinal axis. Cerebral Cortex, bhv336.Google Scholar
  5. Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., et al. (2013). Emergence of individuality in genetically identical mice. Science, 340(6133), 756–759.CrossRefGoogle Scholar
  6. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
  7. Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B: Biological Sciences, 198(1130), 1–59.CrossRefGoogle Scholar
  8. Hubel, D. H., & Wiesel, T. N. (2005). Brain and visual perception: The story of a 25-year collaboration. New York: Oxford University Press.Google Scholar
  9. Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (2006). Neuroscience – Principles of neural science. Tokyo: McGraw-Hill.Google Scholar
  10. Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends in neurosciences, 35(2), 111–122.CrossRefGoogle Scholar
  11. Maffei, A., Lambo, M. E., & Turrigiano, G. G. (2010). Critical period for inhibitory plasticity in RodentBinocular V1. The Journal of Neuroscience, 30(9), 3304–3309.CrossRefGoogle Scholar
  12. Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J., & Boncinelli, E. (2000). Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nature neuroscience, 3(7), 679–686.CrossRefGoogle Scholar
  13. Marcus, G. F. (2004). The birth of the mind: How a tiny number of genes creates the complexities of human thought. New York: Basic Books.Google Scholar
  14. Merabet, L. B., & Pascual-Leone, A. (2010). Neural reorganization following sensory loss: The opportunity of change. Nature Reviews Neuroscience, 11(1), 44–52.CrossRefGoogle Scholar
  15. Merzenich, M. M. (2013). Soft-Wired. San Francisco: Parnassus Publishing.Google Scholar
  16. Merzenich, M., Nahum, M., & van Vleet, T. (2013). Changing brains: Applying brain plasticity to advance and recover human ability (Vol. 207). Amsterdam: Elsevier.Google Scholar
  17. Mundkur, T. (2006). Successes and challenges of promoting conservation of migratory waterbirds and wetlands in the Asia–Pacific region: nine years of a regional strategy. Waterbirds around the world. Edinburgh: The Stationery Office, 81-87.Google Scholar
  18. Petanjek, Z., Judaš, M., Šimić, G., Rašin, M. R., Uylings, H. B., Rakic, P., & Kostović, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences, 108(32), 13281–13286.CrossRefGoogle Scholar
  19. Pinel, J. (2006). Biopsychology (VI ed.). Boston: Pearson.Google Scholar
  20. Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. The Journal of Neuroscience, 26(18), 4970–4982.CrossRefGoogle Scholar
  21. Ramachandran, V. S., & Rogers-Ramachandran, D. (1996). Denial of disabilities in anosognosia. Nature, 379, 815–818.CrossRefGoogle Scholar
  22. Ramachandran, V. S., Rogers-Ramachandran, D., & Cobb, S. (1995). Touching the phantom limb. Nature, 377(6549), 489–490.CrossRefGoogle Scholar
  23. Rosenzweig, M. R., & Bennett, E. L. (1977). Effects of environmental enrichment or impoverishment on learning and on brain values in rodents. InGenetics, environment and intelligence (pp. 163–196). Amsterdam: Elsevier.Google Scholar
  24. Squire, L. R., & Schacter, D. L. (2002). Neuropsychology of memory. New York: Guilford Press.Google Scholar
  25. Sweatt, J. D. (2013). The emerging field of neuroepigenetics. Neuron, 80(3), 624–632.CrossRefGoogle Scholar
  26. Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress Brain Research, 207, 3–34.CrossRefGoogle Scholar
  27. Tallinen, T., Chung, J. Y., Rousseau, F., Girard, N., Lefèvre, J., & Mahadevan, L. (2016). On the growth and form of cortical convolutions. Nature Physics, 12, 588–593.CrossRefGoogle Scholar
  28. Vallee, R. B., & Ts, J.-W. (2006). The cellular roles of the lissencephaly gene LIS1, and what they tell us aboutbrain development. Genes and Development, 20, 1384–1393.CrossRefGoogle Scholar
  29. Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton: Princeton University Press.CrossRefGoogle Scholar
  30. Ward, L. M. (2001). Human neural plasticity. Trends in Cognitive Sciences, 5(8), 325–327.CrossRefGoogle Scholar
  31. Woolsey, T. A., & Wann, J. R. (1976). Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. Journal of Comparative Neurology, 170(1), 53–66.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonino Pennisi
    • 1
  • Alessandra Falzone
    • 1
  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly

Personalised recommendations