Neurocerebral Fundamentals

  • Antonino Pennisi
  • Alessandra Falzone
Part of the Perspectives in Pragmatics, Philosophy & Psychology book series (PEPRPHPS, volume 12)


The chapter is devoted to the description of neurocerebral foundations of language. On the basis of a methodological apparatus that led to the classical Wernicke-Geschwind model, it discusses the research of the last century which led to a complete review of neurocerebral language mapping. In particular, it discusses the reorganization of strong modularism and it deepens the idea of a double network of language in which the components of the neocortex and those of the internal brain continuously interact. The most important part is dedicated to the new theories of Broca’s area, to which both neuroscientists of the Chomskyan area (Grodzinsky) and scholars of evolutionary approach contributed. The latter approach derives a new biolinguistics hypothesis based on Broca’s area, which is considered a new multifunctional processor managing and allowing unified integration of different sensory modalities that are all connected with language.


Subcortical Structure Language Function Linguistic Information High Cognitive Function Linguistic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboitiz, F., Morales, D., & Montiel, J. (2003). The evolutionary origins of the mammalian isocortex: Towards an integrated developmental and functional approach. Behavioral and Brain Sciences, 26, 535–586.Google Scholar
  2. Alper, J. (2001). Sugar separates humans from Apes. Science, 291, 2340.CrossRefGoogle Scholar
  3. Bartels, A., & Zeki, S. (2005). Brain dynamics during natural viewing conditions. A new guide for mapping connectivity in vivo. NeuroImage, 24, 339–349.CrossRefGoogle Scholar
  4. Benson, D. F. (1985). Aphasia. In K. M. Heilman & E. Valstein (Eds.), Clinical neuropsychology (pp. 17–48). Oxford: Oxford University Press.Google Scholar
  5. Bickerton, D. (2000). How protolanguage became language. In C. Knight, J. R. Hurford, & M. Studdert-Kennedy (Eds.), The evolutionary emergence of language. Social function and the origins of linguistic form (pp. 264–284). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Bickerton, D. (2003). Symbol and structure: A comprehensive framework for language evolution. In M. H. Christiansen & S. Kirby (Eds.), Language evolution (pp. 77–93). Oxford: Oxford University Press.CrossRefGoogle Scholar
  7. Blewitt, P., & Toppino, T. C. (1991). The development of taxonomic structure in lexical memory. Journal of Experimental Child Psychology, 51, 296–319.CrossRefGoogle Scholar
  8. Boncinelli, E. (2002). Homeobox genes (Human). Encyclopedia of Molecular Medicine.Google Scholar
  9. Chomsky, N. (1975). Reflections on language. New York: Pantheon Books.Google Scholar
  10. Chwilla, D. J., & Kolk, H. H. J. (2005). Accessing world knowledge: Evidence from N400 and reaction time priming. Cognitive Brain Research, 25, 589–606.CrossRefGoogle Scholar
  11. Cook, A. E., & Myers, J. L. (2004). Processing discourse roles in scripted narratives: The influences of context and world knowledge. Journal of Memory and Language, 50(3), 268–288.CrossRefGoogle Scholar
  12. De Bleser, R., Cubelli, R., & Luzzati, C. (1993). Conduction aphasia, misrepresentations, and word representations. Brain and Language, 45(4), 475–494.CrossRefGoogle Scholar
  13. Deacon, T. W. (1997). The symbolic species. The co-evolution of language and the human brain. New York: W. W. Norton & Company.Google Scholar
  14. Deacon, T. W. (2000). Evolutionary perspectives on language and brain plasticity. Journal of Communication Disorder, 33, 273–291.CrossRefGoogle Scholar
  15. Deacon, T. W. (2004). Monkey homologues of language areas: Computing the ambiguities. TRENDS in Cognitive Sciences, 8(7), 288–290.CrossRefGoogle Scholar
  16. Denes, G., & Pizzamiglio, L. (2000). Manuale di Neuropsicologia. Normalità e patologia dei processi. Milano: Zanichelli.Google Scholar
  17. Domínguez Alonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J., & Rowe, T. B. (2004). The Avian nature of the brain and inner ear of archaeopteryx. Nature, 431, 666–669.CrossRefGoogle Scholar
  18. Dunbar, R. (1996). Grooming, gossip and the evolution of Language. Cambridge: Harvard University Press.Google Scholar
  19. Edelman, G. M. (1988). Topobiology. An introduction to molecular embryology. New York: Basic Books.Google Scholar
  20. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–872.CrossRefGoogle Scholar
  21. Falzone, A. (2004). Filosofia del linguaggio e psicopatologia evoluzionista. Soveria: Rubbettino.Google Scholar
  22. Falzone, A. (2006). Biologia, linguaggio, evoluzione. In A. Pennisi & P. Perconti (Eds.), Le scienze cognitive del linguaggio (pp. 61–92). Il Mulino: Bologna.Google Scholar
  23. Fink, G. R., Manjaly, Z. M., Stephan, K. E., Gurd, J. M., Zilles, K., Amunts, K., & Marshall, J. (2006). A Role for Broca’s Area beyond Language Processing: Evidence from Neuropsychology and fMRI. In K. Amunts & Y. Grodzinsky (Eds.), Broca’s Region (pp. 254–270). Oxford: Oxford University Press.CrossRefGoogle Scholar
  24. Flourens, J. P. M. (1825). Experiences sur le systÈme nerveux. Paris.Google Scholar
  25. Fodor, J. (1983). The modularity of mind: An essay on faculty psychology. Cambridge, MA: The MIT Press.Google Scholar
  26. Friederici, A. D., & Kotz, S. A. (2003). The brain basis of syntactic processes: Functional imaging and lesion studies. Neuroimage, 20, S8–S17.CrossRefGoogle Scholar
  27. Fuster, J. (2003). Cortex and mind. Oxford: Oxford University Press.Google Scholar
  28. Gall, F. J. (1798). Das program. Der Neue Teutsche Merkur, 3, 311–382.Google Scholar
  29. Gazzaniga, M. S. (2008). Human. The science behind what makes us unique. Harper-Collins ebook.Google Scholar
  30. Geschwind, N. (1974). Conduction Aphasia. In N. Geschwind (Ed.), Selected papers on language and the brain (pp. 509–529). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  31. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  32. Grodzinsky, Y. (2000). The neurology of syntax: Language use without Broca’s area. Behavioral and Brain Sciences, 23, 1–71.CrossRefGoogle Scholar
  33. Grodzinsky, Y. (2006a). A blue print for a brain map of syntax. In Y. Grodzinsky & K. Amunts (Eds.), Broca’s region (pp. 83–107). Oxford: Oxford University Press.CrossRefGoogle Scholar
  34. Grodzinsky, Y. (2006b) Syntactic dependencies as memorized sequences in the brain. Canadian Journal of Linguistics, Special 50th Anniversary Issue.Google Scholar
  35. Hagoort, P. (2003). How the brain solves the binding problem for language: A neurocomputational model of syntactic processing. NeuroImage, 20, S18–S29.CrossRefGoogle Scholar
  36. Hagoort, P. (2005). On Broca, brain and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423.CrossRefGoogle Scholar
  37. Hagoort, P. (2006). What we cannot learn from neuroanatomy about language learning and language processing. Commentary on Uyling. Language Learning, 56(suppl. 1), 91–97.CrossRefGoogle Scholar
  38. Hagoort, P., & van Berkum, J. (2007). Beyond the sentence given. Philosophical Transactions of the Royal Society, 362, 801–811.CrossRefGoogle Scholar
  39. Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441.CrossRefGoogle Scholar
  40. Hald, L. A., Steenbeek-Planting, E. G., & Hagoort, P. (2007). The interaction of discourse context and world knowledge in online sentence comprehension. Evidence from the N400. Brain Research, 1146, 210–218.CrossRefGoogle Scholar
  41. Hamzei, F., Rijnties, M., Dettmers, C., Glauche, V., Weiller, C., & Buchel, C. (2003). The human action recognition system and its relationship to Broca’s area: An fMRI study. Neuroimage, 19, 637–644.CrossRefGoogle Scholar
  42. Helmuth, L. (2001). New route to big brains. Science, 293, 1746–1747.CrossRefGoogle Scholar
  43. Holloway, R. L. (1999). Hominid brain volume. Science, 283(5398), 33–33.CrossRefGoogle Scholar
  44. Holloway, R. L., Sherwood, C. C., Hof, P. R., & Rilling, J. K. (2009). Evolution of the brain in humans. Paleoneurology. InEncyclopedia of neuroscience (pp. 1326–1334). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  45. Jeannerod, M. (2008). Language, perception and action. How words are grounded in the brain. European Review, 16(04), 389–398.CrossRefGoogle Scholar
  46. Johansson, S. (2005). Origins of language: Constraints on hypotheses (Vol. 5). Amsterdam: John Benjamins Publishing.CrossRefGoogle Scholar
  47. Karmiloff-Smith, A. (1992). Beyond modularity. A developmental perspective on cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  48. Karten, H. J. (1997). Evolutionary developmental biology meets the brain: The origins of mammalian cortex. Proceedings of the National Academy of Sciences, 94(7), 2800–2804.CrossRefGoogle Scholar
  49. King, B.J. (2002). Biological anthropology. An evolutionary perspective, Chantilly: The Teaching Company.Google Scholar
  50. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519–523.CrossRefGoogle Scholar
  51. Lichtheim, L. (1885). On Aphasia. Brain, 7, 433–484.CrossRefGoogle Scholar
  52. Lieberman, P. (2001). Human language and our reptilian brain. Cambridge, MA: Harvard University Press.Google Scholar
  53. Lieberman, P. (2003). Motor Control, Speech, and the Evolution of Human Language. In M. H. Christiansen & S. Kirby (Eds.), Language Evolution. The States of the Art (pp. 255–271). Oxford: Oxford University Press.CrossRefGoogle Scholar
  54. Lieberman, P. (2006). Toward an evolutionary biology of language. Cambridge, MA: Harvard University Press.Google Scholar
  55. Lo Piparo, F. (2003). Aristotele e il linguaggio. Cosa fa di una lingua una lingua. Roma: Laterza.Google Scholar
  56. Lorenz, K. (1978). Vergleichende Verhaltensforschung. Grundlagen der Ethologie. Wien: Springer.CrossRefGoogle Scholar
  57. MacNeilage, P. F., & Davis, B. L. (2001). Motor mechanisms in speech ontogeny: Phylogenetic, neurobiological and linguistic implications. Current opinion in neurobiology, 11(6), 696–700.CrossRefGoogle Scholar
  58. Marini, A. (2008). Manuale di neurolinguistica. Roma: Carocci.Google Scholar
  59. Mayr, E. (2004a). What makes biology unique? Consideration on the autonomy of a scientific discipline. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Mayr, E. (2004b). What makes biology unique? Considerations on the autonomy of a scientific discipline. New York: Cambridge University Press.CrossRefGoogle Scholar
  61. Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(6), 1013–1052.CrossRefGoogle Scholar
  62. Nishikawa, K. C. (1997). Emergence of novel functions during brain evolution. Bioscience, 47(6), 341–354.CrossRefGoogle Scholar
  63. Nishitani, N., Schürmann, M., Amunts, K., & Hari, R. (2005). Broca’s region: From action to language. Physiology, 20(1), 60–69.CrossRefGoogle Scholar
  64. Ojemann, G. A. (1979). Individual variability in cortical localization of language. Journal of neurosurgery, 50(2), 164–169.CrossRefGoogle Scholar
  65. Papafragou, A., Massey, C., & Gleitman, L. (2002). Shake, rattle,‘n’roll: The representation of motion in language and cognition. Cognition, 84(2), 189–219.CrossRefGoogle Scholar
  66. Papafragou, A., Hulbert, J., & Trueswell, J. (2008). Does language guide event perception? Evidence from eye movements. Cognition, 108(1), 155–184.CrossRefGoogle Scholar
  67. Penfield, W., & Roberts, L. (1959). Speech and brain-mechanisms. Princeton: Princeton University Press.Google Scholar
  68. Pennisi, A. (1994). Le lingue mutole: Le patologie del linguaggio fra teoria e storia. Roma: NIS.Google Scholar
  69. Pennisi, A. (2006). Patologie e psicopatologie del linguaggio. In A. Pennisi & P. Perconti (Eds.), Le scienze cognitive del linguaggio (pp. 175–250). Bologna: Il Mulino.Google Scholar
  70. Pennisi, A. (2009). La piramide e il corallo: l’estinzione come prezzo del linguaggio umano. In D. Gambarara & A. Givigliano (Eds.), Origine e sviluppo del linguaggio, fra teoria e storia (pp. 113–130). Aracne: Roma.Google Scholar
  71. Piccolino, M., & Bresadola, M. (2008). Neuroscienze controverse. Da Aristotele alla moderna scienza del linguaggio. Torino: Bollati Boringhieri.Google Scholar
  72. Pinel, J. (2006). Biopsychology (VI ed.). Boston: Pearson.Google Scholar
  73. Plebe, A. (2008). The ventral visual path: Moving beyond V1 with computational models, In Th. A. Portocello e R.B. Velloti (Eds.), Visual cortex. New research (pp. 97–160) New York: Nova Science.Google Scholar
  74. Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92(1), 1–12.CrossRefGoogle Scholar
  75. Pulvermüller, F. (2008). Grounding language in the brain. In M. de Vega, A. Glenberg, & A. Graesser (Eds.), Symbols and embodiment. Debates on meaning and cognition (pp. 85–116). Oxford: Oxford University Press.CrossRefGoogle Scholar
  76. Purves, D., Cabeza, R., Huettel, S. A., & Platt, M. L. (2008). Principles of cognitive neuroscience (Vol. 83). Sunderland, MA: Sinauer Associates.Google Scholar
  77. Rasmussen, T., & Milner, B. (1975). Clinical and surgical studies of the cerebral speech areas in man. InCerebral localization (pp. 238–257). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  78. Rowe, T. (1996). Coevolution of the mammalian middle ear and neocortex. Science, 273(5275), 651.CrossRefGoogle Scholar
  79. Rumelhart, D. E. (1980). Schemata. The building blocks of cognition. In R. J. Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 33–58). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  80. Sabbagh, M. A. (1999). Communicative intentions and language: Evidence from right-hemisphere damage and autism. Brain and language, 70(1), 29–69.CrossRefGoogle Scholar
  81. Simos, P. G., Molfese, D. L., & Brenden, R. A. (1997). Behavioral and electrophysiological indices of voicing-cue discrimination: Laterality patterns and development. Brain and Language, 57(1), 122–150.CrossRefGoogle Scholar
  82. Smeets, W. J., Marín, O., & González, A. (2000). Evolution of the basal ganglia: New perspectives through a comparative approach. Journal of Anatomy, 196(04), 501–517.CrossRefGoogle Scholar
  83. Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  84. Stowe, L. A., & Haverkort, M. (2003). Understanding language. Brain and Language, 86, 1–8.CrossRefGoogle Scholar
  85. Stowe, L. A., Haverkort, M., & Zwarts, F. (2005). Rethinking the neurological basis of language. Lingua, 115, 997–1042.CrossRefGoogle Scholar
  86. Stringer, C. B. (1992). Evolution of Australopithecines. In S. Jones et al. (Eds.), The Cambridge encyclopedia of human evolution (pp. 241–254). Cambridge: Cambridge University Press.Google Scholar
  87. Tanenhaus, M. K., & Trueswell, J. C. (1995). Sentence comprehension. In P. D. Eimas & J. L. Miller (Eds.), Handbook in perception and cognition. XI: Speech, language, and communication (pp. 217–262). New York/London: Academic Press.Google Scholar
  88. Tettamanti, M., & Weniger, D. (2006). Broca’s area: A supramodal hierarchical processor? Cortex, 42, 491–494.CrossRefGoogle Scholar
  89. Tsimpli, I. M., & Smith, N. (1999). Modules and quasi-modules: Language and theory of mind in a Polyglot Savant. Journal of Learning and Individual Differences, X(3), 193–215.Google Scholar
  90. Van Berkum, J. J., Hagoort, P., & Brown, C. M. (1999). Semantic integration in sentences and discourse: Evidence from the N400. Journal of cognitive neuroscience, 11(6), 657–671.CrossRefGoogle Scholar
  91. Vigneau, M., Beaucousin, V., Hervé, P.Y., Duffau, H., Crivello, F., Houdé, O., Mazoyer, B. & Tzourio-Mazoyera, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, Seman- tics, and sentence processing, In NeuroImage, 30, 1414–1432.Google Scholar
  92. Whitaker, H. A. (1998). History of Neurolinguistics. In B. Stemmer & H. A. Whitaker (Eds.), Handbook of neurolinguistics (pp. 27–57). San Diego: Academic Press.CrossRefGoogle Scholar
  93. Wilkins, W. K. (2009). Mosaic Neurobiology and Anatomical Plausibility. In R. Botha & C. Knight (Eds.), The Prehistory of Language. Oxford: Oxford University Press.Google Scholar
  94. Wilkins, W. K., & Wakefield, J. (1995). Brains evolution and neurolinguistic preconditions. Behavioral and brain sciences, 18(01), 161–182.CrossRefGoogle Scholar
  95. Willems, R. M., Özyürek, A., & Hagoort, P. (2008). Seeing and hearing meaning: ERP and fMRI evidence of word versus picture integration into a sentence context. Journal of Cognitive Neuroscience, 20(7), 1235–1249.CrossRefGoogle Scholar
  96. Wood, B. (1992). Origin and evolution of the genus Homo. Nature, 355, 783–790.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonino Pennisi
    • 1
  • Alessandra Falzone
    • 1
  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly

Personalised recommendations