Advertisement

Time-Bounded Statistical Analysis of Resource-Constrained Business Processes with Distributed Probabilistic Systems

  • Ratul SahaEmail author
  • Madhavan Mukund
  • R. P. Jagadeesh Chandra Bose
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9984)

Abstract

Business processes often incorporate stochastic decision points, either due to uncontrollable actions or because the control flow is not fully specified. Formal modeling of such business processes with resource constraints and multiple instances is hard because of the interplay among stochastic behavior, concurrency, real-time and resource contention. In this setting, statistical techniques are easier to use and more scalable than numerical methods to verify temporal properties. However, existing approaches towards simulation techniques of business processes typically rest on shaky theoretical foundations. In this paper, we propose a modular approach towards modeling stochastic resource-constrained business processes. We analyze such processes in presence of commonly used resource-allocation strategies. Our model, Distributed Probabilistic Systems (DPS), incorporates a set of probabilistic agents communicating among each other in fixed-duration real-time. Our methodology admits statistical analysis of business processes with provable error bounds. We also illustrate a number of real-life scenarios that can be modeled and verified using this approach.

Keywords

Business Process Business Process Management Resource Allocation Strategy Sequential Probability Ratio Test Task Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank S Akshay for his invaluable comments on the draft and Ansuman Banerjee for the early discussions.

References

  1. 1.
    Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997). doi: 10.1007/3-540-63139-9_48 CrossRefGoogle Scholar
  2. 2.
    Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer Science & Business Media, New York (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013, 1–37 (2013)CrossRefGoogle Scholar
  4. 4.
    Aalst, W.M.P.: Business process management as the Killer App for Petri nets. Softw. Syst. Model. 14(2), 685–691 (2014)CrossRefGoogle Scholar
  5. 5.
    Aalst, W.M.P.: Business process simulation survival guide. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1: Introduction, Methods, and Information Systems, pp. 337–370. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Aalst, W.M.P., Hee, K.M.V.: Workow Management: Models, Methods, and Systems. MIT Press, Cambridge (2004)Google Scholar
  7. 7.
    Bose, R.P.J.C., Aalst, W.M.P.: Business Process Management Workshops: BPM 2012 International Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers, pp. 221–222. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Braghetto, K.R., Ferreira, J.E., Vincent, J.-M.: Performance evaluation of resource-aware business processes using stochastic automata networks. Int. J. Innov. Comput. Inf. Control 8(7B), 5295–5316 (2012)Google Scholar
  9. 9.
    Chuang, L.I.N., Yang, Q.U., Fengyuan, R.E.N., Marinescu, D.C.: Performance equivalent analysis of workflow systems based on stochastic Petri net models. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 64–79. Springer, Heidelberg (2002). doi: 10.1007/3-540-45785-2_5 CrossRefGoogle Scholar
  10. 10.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Berlin (2013)CrossRefGoogle Scholar
  11. 11.
    Gastin, P., Lerman, B., Zeitoun, M.: Distributed games and distributed control for asynchronous systems. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 455–465. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24698-5_49 CrossRefGoogle Scholar
  12. 12.
    Herbert, L.T.: Specification, verification and optimisation of business processes. a unified framework. Technical University of Denmark (2014)Google Scholar
  13. 13.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). doi: 10.1007/11691372_29 CrossRefGoogle Scholar
  14. 14.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16612-9_11 CrossRefGoogle Scholar
  15. 15.
    Magnani, M., Montesi, D.: BPMN: how much does it cost? An incremental approach. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 80–87. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75183-0_6 CrossRefGoogle Scholar
  16. 16.
    Netjes, M., Aalst, W.M.P., Hajo, A.R.: Analysis of resource-constrained processes with colored petri nets. In: Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, vol. 576, pp. 251–266 (2005)Google Scholar
  17. 17.
    Oliveira, C.A.L., Lima, R.M.F., Reijers, H.A., Ribeiro, J.T.S.: Quantitative analysis of resource-constrained business processes. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 42(3), 669–684 (2012)CrossRefGoogle Scholar
  18. 18.
    Reijers, H.: Design and Control of Workflow Processes: Business Process Management for the Service Industry. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Russell, N., Ter Hofstede, A.H.M., Mulyar, N., Patterns, W.C.: A revised view. Technical report (2006)Google Scholar
  20. 20.
    Saha, R., Esparza, J., Jha, S.K., Mukund, M., Thiagarajan, P.S.: Distributed Markov chains. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 117–134. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46081-8_7 Google Scholar
  21. 21.
    Sampath, P., Wirsing, M.: Computing the cost of business processes. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, R.-D. (eds.) UNISCON 2009. LNBIP, vol. 20, pp. 178–183. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01112-2_18 CrossRefGoogle Scholar
  22. 22.
    van Dongen, B.F.: BPI challenge 2012 (2012)Google Scholar
  23. 23.
    Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16, 117–186 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, USA (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ratul Saha
    • 1
    Email author
  • Madhavan Mukund
    • 2
  • R. P. Jagadeesh Chandra Bose
    • 3
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.Chennai Mathematical InstituteChennaiIndia
  3. 3.Xerox Research Center IndiaBengaluruIndia

Personalised recommendations