Schedulability Analysis of Timed Regular Tasks by Under-Approximation on WCET

  • Bingbing Fang
  • Guoqiang LiEmail author
  • Daniel Sun
  • Hongming Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9984)


Schedulability analysis is one of the most important issues in developing and analyzing real-time systems. Given a task system where each task is characterized by a worst-case execution time (WCET) and a relative deadline, the schedulability analysis is decidable. However in reality, it is difficult to calculate the WCET of a complex task, even after it is abstracted to a formal model, e.g., timed automata (TAs). This paper proposes a schedulability analysis method without the information of the WCET, by introducing a model named timed regular task automata (TRTAs). Each task is described by a TA, a starting point with a clock valuation, a status and a relative deadline. A test is performed on each TA for an under-approximation of the WCET. The system may still be unschedulable under the approximation. A further schedulability checking is then performed by encoding to the reachability problem of nested timed automata (NeTAs). The methodology is thus sound and complete.


Task Type Parallel Composition Task System Early Deadline First Schedulability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Natural Science Foundation of China with grant No. 61472240, 61672340, 61472238, and the NSFC-JSPS bilateral joint research project with grant No. 61511140100.


  1. 1.
    Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. Springer, New York (2004)zbMATHGoogle Scholar
  2. 2.
    Fersman, E., Krcal, P., Pettersson, P., Wang, Y.: Task automata: schedulability, decidability and undecidability. Inform. Comput. 205(8), 1149–1172 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 1–53 (2008)CrossRefGoogle Scholar
  4. 4.
    Ericsson, C., Wall, A., Wang, Y.: Timed automata as task models for event-driven systems. In: Proceedings of the 6th International Conference on Real-Time Computing Systems and Applications (RTCSA 1999), pp. 182–189. IEEE Computer Society (1999)Google Scholar
  5. 5.
    Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40229-6_12 CrossRefGoogle Scholar
  6. 6.
    Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 189–205. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-22975-1_13 CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Li, G., Yuen, S.: Nested timed automata with various clocks. Sci. Found. China 24(2), 51–68 (2016)Google Scholar
  8. 8.
    Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J. Autom. Lang. Comb. 5(4), 371–404 (2000)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Altisen, K., Gössler, G., Pnueli, A., Sifakis, J., Tripakis, S., Yovine, S.: A framework for scheduler synthesis. In: Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS 1999), pp. 154–163. IEEE Computer Society (1999)Google Scholar
  10. 10.
    Abdeddam, Y., Maler, O.: Job-Shop Scheduling Using Timed Automata? Springer, Berlin (2001)Google Scholar
  11. 11.
    Fehnker, A.: Scheduling a steel plant with timed automata. In: Proceedings of the Sixth International Conference on Real-Time Computing Systems and Applications, pp. 280–286 (1999)Google Scholar
  12. 12.
    Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes: schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002). doi: 10.1007/3-540-46002-0_6 CrossRefGoogle Scholar
  13. 13.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15643-4_23 CrossRefGoogle Scholar
  14. 14.
    Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state machines. In: Proceedings of the 17th International Symposium on Temporal Representation and Reasoning (TIME 2010), pp. 61–68. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Benerecetti, M., Peron, A.: Timed recursive state machines: expressiveness and complexity. Theor. Comput. Sci. 625, 85–124 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inform. Comput. 111(2), 193–244 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012), pp. 35–44. IEEE Computer Society (2012)Google Scholar
  19. 19.
    Kozen, D.C.: Automata and Computability. Springer, New York (1951)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Bingbing Fang
    • 1
  • Guoqiang Li
    • 1
    Email author
  • Daniel Sun
    • 2
  • Hongming Cai
    • 1
  1. 1.School of SoftwareShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Data61, CSIRONew South WalesAustralia

Personalised recommendations