Skip to main content

Single-Cell Metabolomics

  • Chapter
  • First Online:
Metabolomics: From Fundamentals to Clinical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 965))

Abstract

The dynamics of a cell is always changing. Cells move, divide, communicate, adapt, and are always reacting to their surroundings non-synchronously. Currently, single-cell metabolomics has become the leading field in understanding the phenotypical variations between them, but sample volumes, low analyte concentrations, and validating gentle sample techniques have proven great barriers toward achieving accurate and complete metabolomics profiling. Certainly, advanced technologies such as nanodevices and microfluidic arrays are making great progress, and analytical techniques, such as matrix-assisted laser desorption ionization (MALDI), are gaining popularity with high-throughput methodology. Nevertheless, live single-cell mass spectrometry (LCSMS) values the sample quality and precision, turning once theoretical speculation into present-day applications in a variety of fields, including those of medicine, pharmaceutical, and agricultural industries. While there is still room for much improvement, it is clear that the metabolomics field is progressing toward analysis and discoveries at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

7-EC:

7-Ethoxycoumarin

CTC:

Circulating tumor cell

DNA:

Deoxyribonucleic acid

ESI:

Electrospray ionization

iMAP:

Integrated microfluidic array plate

LC-MS:

Liquid chromatography-mass spectrometry

LCSMS:

Live single-cell mass spectrometry

MALDI:

Matrix-assisted laser desorption ionization

MAMS:

Microarrays for mass spectrometry

mRNA:

Messenger ribonucleic acid

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PDMA:

Polydimethylsiloxane

TA:

Tafluprost acid

TOF:

Time of flight

UV:

Ultraviolet

References

  1. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6. doi:10.1093/nar/gkl923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dettmer K, Hammock BD. Metabolomics – a new exciting field within the omics sciences. Environ Health Perspect. 2004;112:A396–7.

    PubMed  PubMed Central  Google Scholar 

  3. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13:263–9. doi:10.1038/nrm3314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. 2010;28:281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snijder B, Pelkmans L. Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. 2011;12:119–25.

    Article  CAS  PubMed  Google Scholar 

  6. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297:1183–6. doi:10.1126/science.1070919.

    Article  CAS  PubMed  Google Scholar 

  7. Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sender R, Fuchs S, Milo R. Preprint on bioRxiv. 2015. doi:10.1101/036103.

  9. Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia. PLoS Genet. 2015;11:e1004900. doi:10.1371/journal.pgen.1004900.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moss S. Do birds have knees?: All your bird questions answered. London: Bloomsbury Publishing; 2016.

    Google Scholar 

  11. Mattsson A, Kärrman A, Pinto R, Brunström B. Metabolic profiling of chicken embryos exposed to perfluorooctanoic acid (PFOA) and agonists to peroxisome proliferator-activated receptors. PLoS One. 2015;10:e0143780. doi:10.1371/journal.pone.0143780.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vastag L, Jorgensen P, Peshkin L, Wei R, Rabinowitz JD, Kirschner MW. Remodeling of the metabolome during early frog development. PLoS One. 2011;6:e16881. doi:10.1371/journal.pone.0016881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onjiko RM, Moody SA, Nemes P. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. Proc Natl Acad Sci U S A. 2015;112:6545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fuller RR, Moroz LL, Gillette R, Sweedler JV. Single neuron analysis by capillary electrophoresis with fluorescence spectroscopy. Neuron. 1998;20:173–81. doi:10.1016/S0896-6273(00)80446-8.

    Article  CAS  PubMed  Google Scholar 

  15. Page JS, Rubakhin SS, Sweedler JV. Direct cellular assays using off-line capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst. 2000;125:555–61.

    Article  CAS  Google Scholar 

  16. Rubakhin SS, Greenough WT, Sweedler JV. Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal Chem. 2003;75:5374–80.

    Article  CAS  PubMed  Google Scholar 

  17. Rubakhin SS, Sweedler JV. Characterizing peptides in individual mammalian cells using mass spectrometry. Nat Protoc. 2007;2:1987–97.

    Article  CAS  PubMed  Google Scholar 

  18. Romanova EV, Rubakhin SS, Monroe EB, Sweedler JV. Single cell analysis: technologies and applications, vol. 56. Weinheim: Wiley-VCH; 2016.

    Google Scholar 

  19. Zimmerman TA, Rubakhin SS, Romanova EV, Tucker KR, Sweedler JV. MALDI mass spectrometric imaging using the stretched sample method to reveal neuropeptide distributions in aplysia nervous tissue. Anal Chem. 2009;81:9402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shrestha B, Vertes A. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2009;81:8265–71.

    Article  CAS  PubMed  Google Scholar 

  21. Tejedor ML, Mizuno H, Tsuyama N, Harada T, Masujima T. In situ molecular analysis of plant tissues by live single-cell mass spectrometry. Anal Chem. 2012;84:5221–8. doi:10.1021/ac202447t.

    Article  Google Scholar 

  22. Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc. 2015;10:1445–56. doi:10.1038/nprot.2015.084.

    Article  CAS  PubMed  Google Scholar 

  23. Tsuyama N, Mizuno H, Tokunaga E, Masujima T. Live single-cell molecular analysis by video-mass spectrometry. Anal Sci. 2008;24:559–61.

    Article  CAS  PubMed  Google Scholar 

  24. Mizuno H, Tsuyama N, Harada T, Masujima T. Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J Mass Spectrom. 2008;43:1692–700. doi:10.1002/jms.1460.

    Article  CAS  PubMed  Google Scholar 

  25. Mizuno H, Tsuyama N, Date S, Harada T, Masujima T. Live single-cell metabolomics of tryptophan and histidine metabolites in a rat basophil leukemia cell. Anal Sci. 2008;24:1525–7.

    Article  CAS  PubMed  Google Scholar 

  26. Date S, Mizuno H, Tsuyama N, Harada T, Masujima T. Direct drug metabolism monitoring in a live single hepatic cell by video mass spectrometry. Anal Sci. 2012;28:201–3.

    Article  CAS  PubMed  Google Scholar 

  27. Hiyama E, Ali A, Amer S, Harada T, Shimamoto K, Furushima R, Abouleila Y, Emara S, Masujima T. Direct lipido-metabolomics of single floating cells for analysis of circulating tumor cells by live single-cell mass spectrometry. Anal Sci. 2015;31:1215–7. doi:10.2116/analsci.31.1215.

    Article  CAS  PubMed  Google Scholar 

  28. Ibáñez AJ, Fagerer SR, Schmidt AM, Urban PL, Jefimovs K, Geiger P, et al. Mass spectrometry-based metabolomics of single yeast cells. Proc Natl Acad Sci U S A. 2013;110:8790–4. doi:10.1073/pnas.1209302110.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taniguchi Y. Genome-wide analysis of protein and mRNA copy numbers in single Escherichia coli cells with single-molecule sensitivity. Methods Mol Biol. 2015;1346:55–67.

    Article  PubMed  Google Scholar 

  30. Ohno M, Karagiannis P, Taniguchi Y. Protein expression analyses at the single cell level. Molecules. 2014;19:13932–47.

    Article  PubMed  Google Scholar 

  31. Taniguchi Y, Choi PJ, Li G, Chen H, Babu M, et al. Quantifying E-coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Essaka DC, Prendergast J, Keithley RB, Hindsgaul O, Palcic MM, Schnaar RL, Dovichi NJ. Single cell ganglioside catabolism in primary cerebellar neurons and glia. Neurochem Res. 2012;37:1308–14.

    Google Scholar 

  33. Zenobi R. Single-cell metabolomics: analytical and biological perspectives. Science. 2013;342:1243259. doi:10.1126/science.1243259.

    Article  CAS  PubMed  Google Scholar 

  34. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10. doi:10.1038/nature05372.

    Article  PubMed  Google Scholar 

  35. Ungai-Salánki R, Gerecsei T, Fürjes P, Orgovan N, Sándor N, Holczer E, et al. Automated single cell isolation from suspension with computer vision. Sci Rep. 2016;9:20375. doi:10.1038/srep20375.

    Article  Google Scholar 

  36. Yan R, Park JH, Choi Y, Heo CJ, Yang SM, Lee LP, et al. Nanowire-based single-cell endoscopy. Nat Nanotechnol. 2011;7:191–6. doi:10.1038/nnano.2011.226.

    Article  PubMed  Google Scholar 

  37. Boukany PE, Morss A, Liao WC, Henslee B, Jung H, Zhang X, et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol. 2011;6:747–54. doi:10.1038/nnano.2011.164.

    Article  CAS  PubMed  Google Scholar 

  38. Carlo DD, Wu LY, Lee LP. Dynamic single cell culture array. Lab Chip. 2006;6:1445–9. doi:10.1039/B605937F.

    Article  PubMed  Google Scholar 

  39. Dimov IK, Kijanka G, Park Y, Ducrée J, Kang T, Lee LP. Integrated microfluidic array plate (iMAP) for cellular and molecular analysis. Lab Chip. 2011;11:2701–10. doi:10.1039/c1lc20105k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603. doi:10.1128/CMR.00072-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72:652–7.

    Article  CAS  PubMed  Google Scholar 

  42. Walker BN, Stolee JA, Vertes A. Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem. 2012;84:7756–62. doi:10.1021/ac301238k.

    Article  CAS  PubMed  Google Scholar 

  43. Masujima T. Visualized single cell dynamics and analysis of molecular tricks. Anal Chim Acta. 1999;400:33–43. doi:10.1016/S0003-2670(99)00704-7.

    Article  CAS  Google Scholar 

  44. Masujima T. Live single-cell mass spectrometry. Anal Sci. 2009;25:953–60.

    Article  CAS  PubMed  Google Scholar 

  45. Tejedor LM, Mizuno H, Tsuyama N, Harada T, Masujima T. Direct single-cell molecular analysis of plant tissues by video mass spectrometry. Anal Sci. 2009;25:1053–5.

    Article  CAS  Google Scholar 

  46. Fukano Y, Tsuyama N, Mizuno H, Date S, Takano M, Masujima T. Drug metabolite heterogeneity in cultured single cells profiled by pico-trapping direct mass spectrometry. Nanomedicine. 2012;7:1365–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Masujima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Emara, S., Amer, S., Ali, A., Abouleila, Y., Oga, A., Masujima, T. (2017). Single-Cell Metabolomics. In: Sussulini, A. (eds) Metabolomics: From Fundamentals to Clinical Applications. Advances in Experimental Medicine and Biology(), vol 965. Springer, Cham. https://doi.org/10.1007/978-3-319-47656-8_13

Download citation

Publish with us

Policies and ethics