Skip to main content

DeSIRE 2: Satcom Modeling and Simulation a Powerful Tool to Enable Cost Effective and Safe Approach to RPAS Operational Deployment

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2016)

Abstract

Drones are a breakthrough systemic solution for a number of applications, from institutional and governmental purposes to a wide range of possible commercial applications. Autonomous and remotely controlled machines, fully integrated with many devices all connected wherever they are, are going to be a major part of the Internet of Things (IoT), where satellite communication plays a pivotal role.

Modelling and Simulation (M&S) are very helpful tools in the design and risk reduction of sustainable integration of Autonomous Systems into cost effective operational activities. As matter of fact, the M&S approach is extensively used in the DeSIRE 2 (Demonstration of the use of Satellites complementing Remotely Piloted Aircraft Systems integrated in non-segregated airspace 2nd Element). The ongoing Project, recently launched by the European Space Agency and the European Defence Agency, aims to demonstrate a service based on a Remotely Piloted Aircraft (RPA) flying in Beyond Radio Line of Sight (BRLOS) using space assets (SatCom, SatNav). The project has been kicked off in April 2015, after a selective process among important European consortia, and is leaded by Telespazio.

Through Model and Simulation, within DeSIRE 2 it will be possible to:

  • Decrease costs, considering the loop “designing, building, testing, redesigning, rebuilding, retesting”;

  • Make easier the “what-if” definition and analysis allowing the definition and experimentation and test of CONOPS;

  • De-risk the overall project.

To characterize adequately the Satcom link of DeSIRE 2 against the stringent performance requirements of the aeronautical context, an intensive measurement campaign is required. Concerning flight, the testing hours for a large RPAS are very costly. Therefore, it has been decided to add to the experimental flight campaign a combination of simulated and emulated environments, which replicate, as much as possible, the real operational conditions.

The models used in the simulation will be refined during the iterations, increasing the robustness and reliability, thus, making available results otherwise difficult, costly and even dangerous to be experiment directly in the real world.

An overview of the main expected results and how they should support the European standardisation and regulatory activities in the framework of the Air Traffic Insertion (ATI), especially for the definition of future satellite-based command & control datalinks, will be given as well. The paper will explain how the project intends to characterise the Satcom command and control datalinks for both Ka and L frequency bands.

It will be described how the threefold simulation/emulation/flight campaign approach will be followed to demonstrate that the system meets or exceeds the design requirement by combining:

  • Mission Simulation, including satcom, airborne, mission applications and combination of the above segments;

  • (Satcom) Emulation with real satellite full communication and RPA/RPS simulators.

  • Mixed simulation and emulation will also be considered and real hardware will be introduced in the simulation loop (e.g. real satellite transponders and on board satcom terminals);

  • Flight Campaign.

At any stage of this iteration, the results will be fed-back into the simulation/emulation chain. For example, the measured jitter and error rates will be introduced to update the parameters for the simulators for more trustworthy results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EUROPEAN COMMISSION: Towards a European strategy for the development of civil applications of Remotely Piloted Aircraft Systems (RPAS)

    Google Scholar 

  2. ERSG: European RPAS Roadmap

    Google Scholar 

  3. DESIRE D13 Final Report

    Google Scholar 

  4. JARUS: RPAS C2 link Required Communication Performance (C2 link RCP) Concept

    Google Scholar 

  5. JARUS: Guidance on RPAS C2 link Required Communication Performance

    Google Scholar 

  6. ICAO: Doc 9869 AN/462, Manual on Required Communication Performance (RCP)

    Google Scholar 

  7. ICAO: Doc 10019 AN/507, Manual on Remotely Piloted Aircraft Systems (RPAS)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Anselmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Cosenza, G., Mura, A., Righetto, A., De Piccoli, F., Rapisardi, D., Anselmi, L. (2016). DeSIRE 2: Satcom Modeling and Simulation a Powerful Tool to Enable Cost Effective and Safe Approach to RPAS Operational Deployment. In: Hodicky, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2016. Lecture Notes in Computer Science(), vol 9991. Springer, Cham. https://doi.org/10.1007/978-3-319-47605-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47605-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47604-9

  • Online ISBN: 978-3-319-47605-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics