Skip to main content

Geometrical-, Physical- and Field-Scaling Impact on MOS Transistor Behaviour

  • Chapter
Nanometer CMOS ICs
  • 3348 Accesses

Abstract

The simple formulae derived in Sects. 1.4 and 1.5 account for the first-order effects which influence the behaviour of MOS transistors. Until the mid-seventies, formulae (1.18) appeared quite adequate for predicting the performance of MOS circuits. However, these transistor formulae ignore several physical and geometrical effects which significantly degrade the behaviour of MOS transistors. The results are therefore considerably more optimistic than the actual performance observed in MOS circuits. The deviation becomes more significant as MOS transistor sizes decrease in VLSI circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Walker, P.H. Woerlee, A mobility model for MOSFET device simulations. J. Phys. colloque C4 49 (9), 256 1988

    Google Scholar 

  2. M. Vertregt, The Analog Challenge in Nanometer CMOS. IEDM Digest of Technical Papers, pp. 11–18 (2006)

    Google Scholar 

  3. N. Weste, D.M. Harris, CMOS VLSI Design, A Systems Perspective, 4th edn. (Addison-Wesley, Boston, 2011)

    Google Scholar 

  4. R.S.C. Cobbold, Theory and Applications of Field Effect Transistors (Wiley, New York, 1970)

    Google Scholar 

  5. I.M. Filanovsky, A. Allam, Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 48 (7), 876–884 (2001)

    Article  Google Scholar 

  6. E. Long et al., Detection of temperature sensitive defects using ZTC, in Proceedings of 22nd IEEE VLSI Test Symposium (VTS 2004)

    Google Scholar 

  7. A. Dasnan et al., Handling inverted temperature dependance in static timing analysis. ACM Trans. Design Autom. Electronic Syst. 11 (2), 306–324 (2006)

    Article  Google Scholar 

  8. R. Kumar et al., Reversed temperature-dependent propagation delay characteristics in nanometer CMOS circuits. IEEE Trans. Circuits Syst. II: Express Briefs 53(10), 1078–1082 (2006)

    Article  Google Scholar 

  9. R. van Langevelde et al., Gate current: modelling, \(\Delta \) L extraction and impact on RF performance. IEDM Technical Digest, pp. 289–292 (2001)

    Google Scholar 

  10. F. Hamzaoglu et al., Circuit-level techniques to control gate leakage for sub-100nm CMOS, in Proceedings of the 2002 ISLPED Symposium, pp. 60–63

    Google Scholar 

  11. G. Gildenblat et al., PSP: an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans. Electron Dev. 53 (9), 1979–1993 (2006)

    Article  Google Scholar 

  12. D. Lee et al., Gate Oxide leakage current analysis and reduction for VLSI circuits. IEEE Trans. VLSI Syst. 12 (2), 155–166 (2004)

    Article  MathSciNet  Google Scholar 

  13. J. Assenmacher, BSIM4 modelling and Parameter Extraction (2003). http://www.ieee.org/r5/denver/sscs/References/2003_03_Assenmacher.pdf

  14. G. Marcyk et al., New Transistors for 2005 and Beyond, http://www.eas.asu.edu/~vasilesk/EEE531/TeraHertzlong.pdf

  15. A. Scholten et al., The physical background of JUNCAP2. IEEE Trans. Electron Dev. 53 (9), 2098–2107 (2006)

    Article  Google Scholar 

  16. R. Woltjer et al., An industrial view on compact modeling, in Proceedings of the 36th European Solid-State Device Research Conference, Sept 2006, pp. 41–48

    Google Scholar 

General Basic Physics

  1. S.M. Sze, Very Large Scale Integration Technology, 2nd edn. (Mc Graw-Hill, New York, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

J.M. Veendrick, H. (2017). Geometrical-, Physical- and Field-Scaling Impact on MOS Transistor Behaviour. In: Nanometer CMOS ICs. Springer, Cham. https://doi.org/10.1007/978-3-319-47597-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47597-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47595-0

  • Online ISBN: 978-3-319-47597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics