Advertisement

Analysis of Atlantic Tropical Cyclone Landfall Forecasts in Coupled GCMs on Seasonal and Decadal Timescales

Chapter

Abstract

In this chapter we present advances in forecasting Atlantic tropical cyclone (TC) landfall statistics at both seasonal and multi-annual timescales using coupled global climate models. First, we demonstrate potential for forecasting TC landfall frequency on seasonal timescales using the Met Office seasonal forecast system, GloSea5, in some regions: statistically significant skill is found in the Caribbean and moderate skill is found for Florida. In contrast, low skill is found along the US Coast as a whole. We show that the skill over the Caribbean is likely due to a good model response to El Niño–Southern Oscillation (ENSO) forcing. Lack of skill along the US Coast may be due to a weaker influence from ENSO compounded by a low bias in model storm tracks crossing the US coastline. Secondly, we demonstrate that it is possible to construct reliable 4-year mean forecasts of landfalling hurricane numbers in the Atlantic using initialised global climate models to predict an index that relies on subpolar gyre temperature and subtropical sea level pressure, two quantities with links to hurricane activity. Furthermore, we give evidence that the forecast system anticipates large changes in at least one of the two components of this index, which suggests that the technique could be used to forecast shifts between active and inactive regimes of hurricane activity in the Atlantic.

Keywords

Tropical storms Hurricanes Landfall Seasonal forecasting Decadal forecasting Ensembles United States Caribbean El Niño Atlantic variability Atlantic multi-decadal oscillation Accumulated cyclone energy 

Notes

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We would also like to thank the Earth System Research Laboratory (NOAA) and the Japan Meteorological Agency for making their data available and Katherine Barrett for proofreading this manuscript. JC acknowledges financial support from the UK Public Weather Service, NSF of China (NSFC) grants (40805028) and China Meteorological Special Project (GYHY201506013). LPC acknowledges financial support from the Ministerio de Economía y Competitividad (MINECO; project CGL2014-55764-R), Risk Prediction Initiative at BIOS (grant number RPI2.0-2013-CARON) and from the EU-funded SPECS project (grant number 308378). Both authors wish to thank Dr Philip Klotzbach and one anonymous reviewer for their valuable comments for improving the manuscript.

References

  1. Bengtsson L, Bottger H, Kanamitsu M (1982) Simulation of hurricane-type vortices in a general circulation model. Tellus A 34:440–457. doi: 10.3402/tellusa.v47i2.11500 CrossRefGoogle Scholar
  2. Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus A 48:57–73CrossRefGoogle Scholar
  3. Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo JJ, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus A 59(4):539–561. doi: 10.1111/j.1600-0870.2007.00251.x, http://dx.doi.org/10.1111/j.1600-0870.2007.00251.x
  4. Bove MC, O’Brien JJ, Eisner JB, Landsea CW, Niu X (1998) Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull Am Meteorol Soc 79(11):2477–2482. doi:  10.1175/1520-0477(1998)079%3C2477:eoenoo%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0477(1998)079%3C2477:eoenoo%3E2.0.co;2
  5. Camargo SJ (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26(24):9880–9902. doi: 10.1175/jcli-d-12-00549.1, http://dx.doi.org/10.1175/jcli-d-12-00549.1
  6. Camargo SJ, Wing AA (2015) Tropical cyclones in climate models. WIREs Clim Change p n/a. doi:  10.1002/wcc.373, http://dx.doi.org/10.1002/wcc.373
  7. Camargo SJ, Sobel AH, Barnston AG, Klotzbach PJ (2010) The influence of natural climate variability on tropical cyclones, and seasonal forecasts of tropical cyclone activity, vol 4. World Scientific, Singapore, pp 325–360. doi:  10.1142/9789814293488_0011, http://dx.doi.org/10.1142/9789814293488_0011
  8. Camp J, Roberts M, MacLachlan C, Wallace E, Hermanson L, Brookshaw A, Arribas A, Scaife AA (2015) Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. QJR Meteorol Soc p n/a. doi:  10.1002/qj.2516, http://dx.doi.org/10.1002/qj.2516
  9. Caron LP, Jones CG (2011) Understanding and simulating the link between African easterly waves and Atlantic tropical cyclones using a regional climate model: the role of domain size and lateral boundary conditions. Clim Dyn 39(1–2):113–135. doi:  10.1007/s00382-011-1160-8, http://link.springer.com/10.1007/s00382-011-1160-8
  10. Caron LP, Jones CG, Winger K (2010) Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity. Clim Dyn 37(5–6):869–892. doi:  10.1007/s00382-010-0846-7, http://link.springer.com/10.1007/s00382-010-0846-7
  11. Caron LP, Jones CG, Doblas-Reyes F (2014) Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Clim Dyn 42:2675–2690. doi:  10.1007/s00382-013-1773-1, http://link.springer.com/10.1007/s00382-013-1773-1
  12. Caron LP, Boudreault M, Bruyère CL (2015a) Large-scale control of Atlantic tropical cyclone activity as a function of the Atlantic multi-decadal oscillation phase. Clim Dyn 44:1801–1821. doi:  10.1007/s00382-014-2186-5 CrossRefGoogle Scholar
  13. Caron LP, Hermanson L, Doblas-Reyes FJ (2015b) Multiannual forecasts of Atlantic U.S. tropical cyclone wind damage potential. Geophys Res Lett 42:2417–2425. doi:  10.1002/2015GL063303 CrossRefGoogle Scholar
  14. Chen JH, Lin SJ (2011) The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys Res Lett 38(11):L11804+. doi:  10.1029/2011gl047629, http://dx.doi.org/10.1029/2011gl047629
  15. Chen JH, Lin SJ (2013) Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J Clim 26(2):380–398. doi:  10.1175/jcli-d-12-00061.1, http://dx.doi.org/10.1175/jcli-d-12-00061.1
  16. CPC (2015) Historical El Nino/ La Nina episodes (1950-present). CPC. [Available online at http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyea%rs.shtml]Google Scholar
  17. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137(656):553–597. doi:  10.1002/qj.828, http://dx.doi.org/10.1002/qj.828
  18. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F (2006) GFDL’s CM2 global coupled climate models – Part 1: formulation and simulation characteristics. J Clim 19:643–674. doi:  10.1175/JCLI3629.1 CrossRefGoogle Scholar
  19. Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys Res Lett 38:L14701. doi:  10.1029/2011GL047949, http://doi.wiley.com/10.1029/2011GL047949
  20. Dunstone NJ, Smith DM, Booth BBB, Hermanson L, Eade R (2013) Anthropogenic aerosol forcing of Atlantic tropical storms. Nat Geosci 6(7):1–6. doi:  10.1038/ngeo1854, http://www.nature.com/doifinder/10.1038/ngeo1854
  21. Goddard L, Kumar a, Solomon a, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CaT, Stephenson DB, Meehl Ga, Stockdale T, Burgman R, Greene aM, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40(1–2):245–272. doi:  10.1007/s00382-012-1481-2
  22. Goldenberg SB, Landsea CW, Mestas-Nunez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479CrossRefGoogle Scholar
  23. Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  24. Gray WM (1984a) Atlantic seasonal hurricane frequency. Part I: El Niño and 30MB Quasi-Biennial Oscillation influences. Mon Weather Rev 112:1649–1668CrossRefGoogle Scholar
  25. Gray WM (1984b) Atlantic seasonal hurricane frequency. Part II: forecasting its variability. Mon Weather Rev 112:1669–1683CrossRefGoogle Scholar
  26. Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123(12):3458–3465. doi:  10.1175/1520-0493(1995)123%3C3458:ftotus%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0493(1995)123%3C3458:ftotus%3E2.0.co;2
  27. Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124(12):2914–2932. doi:  10.1175/1520-0493(1996)124%3C2914:sneatt%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0493(1996)124%3C2914:sneatt%3E2.0.co;2
  28. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127(6):1362–1373. doi:  10.1175/1520-0493(1999)127%3C1362:acfft%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0493(1999)127%3C1362:acfft%3E2.0.co;2
  29. Jewson S, Bellone E, Khare S, Laepple T, Lonfat M, Shay AO, Penzer J, Coughlin K (2009) 5-Year prediction of the number of hurricanes which make U.S. landfall. In: Elsner JB, Jagger TH (eds) Hurricanes and climate change. Springer, New York, pp 73–99. doi:  10.1007/978-0-387-09410-6_5 CrossRefGoogle Scholar
  30. Klotzbach P, Gray W, Fogarty C (2015) Active Atlantic hurricane era at its end? Nat Geosci 8(10):737–738. doi:  10.1038/ngeo2529, http://dx.doi.org/10.1038/ngeo2529
  31. Klotzbach PJ (2007) Revised prediction of seasonal Atlantic basin tropical cyclone activity from 1 August. Weather Forecast 22(5):937–949. doi:  10.1175/waf1045.1, http://dx.doi.org/10.1175/waf1045.1
  32. Klotzbach PJ (2011a) El Niño-Southern oscillation’s impact on Atlantic basin hurricanes and U.S. landfalls. J Clim 24(4):1252–1263. doi:  10.1175/2010jcli3799.1, http://dx.doi.org/10.1175/2010jcli3799.1
  33. Klotzbach PJ (2011b) The influence of El Niño-Southern oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J Clim 24(3):721–731. doi:  10.1175/2010jcli3705.1, http://dx.doi.org/10.1175/2010jcli3705.1
  34. Klotzbach PJ, Gray WM (2008) Multidecadal variability in North Atlantic tropical cyclone activity. J Clim 21(15):3929–3935. doi:  10.1175/2008JCLI2162.1, http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2162.1
  35. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33(17):L17,706. doi:  10.1029/2006GL026242, http://doi.wiley.com/10.1029/2006GL026242
  36. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. doi:  10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  37. Kossin JP, Vimont DJ (2007) A more general framework for understanding Atlantic hurricane variability and trends. Bull Am Meteorol Soc 88(11):1767–1781. doi:  10.1175/BAMS-88-11-1767, http://journals.ametsoc.org/doi/abs/10.1175/BAMS-88-11-1767
  38. Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141(10):3576–3592. doi:  10.1175/mwr-d-12-00254.1, http://dx.doi.org/10.1175/mwr-d-12-00254.1
  39. LaRow TE, Stefanova L, Shin DW, Cocke S (2010) Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys Res Lett 37(2):L02,804+. doi:  10.1029/2009gl041459, http://dx.doi.org/10.1029/2009gl041459
  40. Larson J, Zhou Y, Higgins RW (2005) Characteristics of landfalling tropical cyclones in the United States and Mexico: climatology and interannual variability. J Clim 18(8):1247–1262. doi:  10.1175/jcli3317.1, http://dx.doi.org/10.1175/jcli3317.1
  41. Lyons SW (2004) U.S. tropical cyclone landfall variability: 1950–2002. Weather Forecast 19(2):473–480. doi:  10.1175/1520-0434(2004)019%3C0473:utclv%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0434(2004)019%3C0473:utclv%3E2.0.co;2
  42. MacLachlan C, Arribas A, Peterson KA, Maidens A, Fereday D, Scaife AA, Gordon M, Vellinga M, Williams A, Comer RE, Camp J, Xavier P, Madec G (2014) Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. QJR Meteorol Soc p n/a. doi:  10.1002/qj.2396, http://dx.doi.org/10.1002/qj.2396
  43. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25(24):8502–8523. doi:  10.1175/JCLI-D-11-00633.1, http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00633.1
  44. Mei W, Xie SP, Zhao M (2014) Variability of tropical cyclone track density in the North Atlantic: observations and high-resolution simulations. J Clim 27(13):4797–4814. doi:  10.1175/jcli-d-13-00587.1, http://dx.doi.org/10.1175/jcli-d-13-00587.1
  45. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka Sa, Raper SCB, Riahi K, Thomson a, Velders GJM, Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. doi:  10.1007/s10584-011-0156-z, http://link.springer.com/10.1007/s10584-011-0156-z
  46. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM*. J Clim 25(9):3237–3260. doi:  10.1175/jcli-d-11-00415.1, http://dx.doi.org/10.1175/jcli-d-11-00415.1
  47. Reed KA, Bacmeister JT, Rosenbloom NA, Wehner MF, Bates SC, Lauritzen PH, Truesdale JE, Hannay C (2015) Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys Res Lett 42(9):2015GL063,974+. doi:  10.1002/2015gl063974, http://dx.doi.org/10.1002/2015gl063974
  48. Roberts MJ, Vidale PL, Mizielinski MS, Demory ME, Schiemann R, Strachan J, Hodges K, Bell R, Camp J (2015) Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. J Clim 28(2):574–596. doi:  10.1175/jcli-d-14-00131.1, http://dx.doi.org/10.1175/jcli-d-14-00131.1
  49. Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the North Atlantic ocean in the Mid-1990s. J Clim 25(12):4116–4134. doi:  10.1175/JCLI-D-11-00443.1, http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00443.1
  50. Robson J, Sutton R, Smith D (2014) Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Clim Dyn 42(9–10):2353–2365. doi:  10.1007/s00382-014-2115-7, http://link.springer.com/10.1007/s00382-014-2115-7
  51. Shaevitz DA, Camargo SJ, Sobel AH, Jonas JA, Kim D, Kumar A, LaRow TE, Lim YK, Murakami H, Reed KA, Roberts MJ, Scoccimarro E, Vidale PL, Wang H, Wehner MF, Zhao M, Henderson N (2014) Characteristics of tropical cyclones in high-resolution models in the present climate. J Adv Model Earth Syst 6(4):1154–1172. doi:  10.1002/2014ms000372, http://dx.doi.org/10.1002/2014ms000372
  52. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3(12):846–849. doi:  10.1038/ngeo1004, http://www.nature.com/doifinder/10.1038/ngeo1004
  53. Smith SR, Brolley J, O’Brien JJ, Tartaglione CA (2007) ENSO’s impact on regional U.S. hurricane activity. J Clim 20(7):1404–1414. doi:  10.1175/jcli4063.1, http://dx.doi.org/10.1175/ jcli4063.1
  54. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged Land-Ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:  10.1175/2007JCLI2100.1, http://journals.ametsoc.org/doi/abs/10.1175/2007JCLI2100.1
  55. Strachan J, Vidale PL, Hodges K, Roberts M, Demory ME (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26(1):133–152. doi:  10.1175/jcli-d-12-00012.1, http://dx.doi.org/10.1175/jcli-d-12-00012.1
  56. Strazzo S, Elsner JB, LaRow T, Halperin DJ, Zhao M (2013) Observed versus GCM-generated local tropical cyclone frequency: comparisons using a spatial lattice. J Clim 26(21):8257–8268. doi:  10.1175/jcli-d-12-00808.1, http://dx.doi.org/10.1175/jcli-d-12-00808.1
  57. Tartaglione CA, Smith SR, O’Brien JJ (2003) ENSO impact on hurricane landfall probabilities for the Caribbean. J Clim 16(17):2925–2931. doi:  10.1175/1520-0442(2003)016%3C2925:eiohlp%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0442(2003)016%3C2925:eiohlp%3E2.0.co;2
  58. Vecchi GA, Zhao M, Wang H, Villarini G, Rosati A, Kumar A, Held IM, Gudgel R (2011) Statistical-dynamical predictions of seasonal North Atlantic hurricane activity. Mon Weather Rev 139(4):1070–1082. doi:  10.1175/2010mwr3499.1, http://dx.doi.org/10.1175/2010mwr3499.1
  59. Vecchi GA, Msadek R, Anderson W, Chang YS, Delworth T, Dixon K, Gudgel R, Rosati A, Stern B, Villarini G, Wittenberg A, Yang X, Zeng F, Zhang R, Zhang S (2013) Multi-year predictions of North Atlantic hurricane frequency: promise and limitations. J Clim 26:5337–5357. doi:  10.1175/JCLI-D-12-00464.1 CrossRefGoogle Scholar
  60. Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg AT, Zeng F, Anderson W, Balaji V, Dixon K, Jia L, Kim HS, Krishnamurthy L, Msadek R, Stern WF, Underwood SD, Villarini G, Yang X, Zhang S (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27(21):7994–8016. doi:  10.1175/jcli-d-14-00158.1, http://dx.doi.org/10.1175/jcli-d-14-00158.1
  61. Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34(7):L07,709. doi:  10.1029/2007GL029683, http://doi.wiley.com/10.1029/2007GL029683
  62. Vitart F, Stockdale TN (2001) Seasonal forecasting of tropical storms using coupled GCM integrations. Mon Weather Rev 129(10):2521–2537. doi:  10.1175/1520-0493(2001)129%3C2521:sfotsu%3E2.0.co;2, http://dx.doi.org/10.1175/1520-0493(2001)129%3C2521:sfotsu%3E2.0.co;2
  63. Vitart F, Anderson JL, Stern WF (1997) Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J Clim 10(4):745–760. doi:  10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2
  64. Vitart F, Huddleston MR, Déqué M, Peake D, Palmer TN, Stockdale TN, Davey MK, Ineson S, Weisheimer A (2007) Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys Res Lett 34(16):L16815+. doi:  10.1029/2007gl030740, http://dx.doi.org/10.1029/2007gl030740
  65. Von Storch H, Zwiers F (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge, UKGoogle Scholar
  66. Walsh K, Watterson IG (1997) Tropical cyclone-like vortices in a limited area model: comparison with observed climatology. J Clim 10(9):2240–2259CrossRefGoogle Scholar
  67. Wang H, Long L, Kumar A, Wang W, Schemm JKE, Zhao M, Vecchi GA, Larow TE, Lim YK, Schubert SD, Shaevitz DA, Camargo SJ, Henderson N, Kim D, Jonas JA, Walsh KJE (2014) How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J Clim 27(15):5673–5692. doi:  10.1175/jcli-d-13-00625.1, http://dx.doi.org/10.1175/jcli-d-13-00625.1
  68. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:  10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  69. Xie L, Pietrafesa L, Wu K (2002) Interannual and decadal variability of landfalling tropical cyclones in the Southeast Coastal States of the United States. 19(4):677–686. doi:  10.1007/s00376-002-0007-y, http://dx.doi.org/10.1007/s00376-002-0007-y
  70. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(17):L17712. doi:  10.1029/2006GL026267, http://doi.wiley.com/10.1029/2006GL026267
  71. Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22(24):6653–6678. doi:  10.1175/2009jcli3049.1, http://dx.doi.org/10.1175/2009jcli3049.1
  72. Zhao M, Held IM, Vecchi GA (2010) Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon Weather Rev 138(10):3858–3868. doi:  10.1175/2010mwr3366.1, http://dx.doi.org/10.1175/2010mwr3366.1

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Met Office Hadley CentreExeterUK
  2. 2.Earth Science DepartmentBarcelona Supercomputing Center, Nexus II buildingBarcelonaSpain

Personalised recommendations