Advertisement

High-Resolution Multi-decadal Simulation of Tropical Cyclones

Chapter

Abstract

Recent advances in high-performance computing technologies are enabling multiple climate modeling groups to perform global multi-decadal simulations at tropical cyclone-permitting resolutions. This chapter discusses the developing state of the art of such high-resolution modeling. These global atmospheric models, with horizontal resolutions in the 10–50 km range, simulate strong gradients in temperature and moisture far more realistically than contemporary mainstream climate models at coarser resolution. With these models, simulated tropical cyclones exhibit a surprising degree of realism in terms of both the physical characteristics of individual storms and their long-term statistical behavior. Experience with the Community Atmospheric Model version 5 is used as an example to demonstrate the strengths and weaknesses of this new class of climate models.

Keywords

Tropical cyclones Hurricanes High-resolution global climate models Variable-resolution Hurricane tracking Cyclogenesis Climate change High-performance computing 

Notes

Acknowledgements

This work was partially supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231. This document was prepared as an account of work sponsored by the US government. While this document is believed to contain correct information, neither the US government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US government or any agency thereof or the Regents of the University of California.

References

  1. Arakawa A, Wu CM (2013) A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J Atmos Sci 70:1977–1992. doi:  10.1175/JAS-D-12-0330.1 CrossRefGoogle Scholar
  2. Bacmeister JT, Wehner MF, Neale RB, Gettelman A, Hannay C, Lauritzen PH, Caron JM, Truesdale JE (2014) Exploratory high-resolution climate simulations using the community atmosphere model (CAM). J Clim 27:3073–3099. doi:  10.1175/JCLI-D-13-00387.1 CrossRefGoogle Scholar
  3. Bacmeister JT, Reed KA, Hannay C, Lawrence PJ, Bates SC, Truesdale JT, Rosenbloom NA, Levy ML (2016, in press) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Change. doi:  10.1007/s10584-016-1750-x
  4. Bell GD, Halpert MS, Schnell RC, Higgins RW, Lawrimore J, Kousky VE, Tinker R, Thiaw W, Chelliah M, Artusa A (2000) Climate assessment for 1999. Bull Am Meteorol Soc 81(6):1328CrossRefGoogle Scholar
  5. Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458. doi:  10.1126/science.1180568 CrossRefGoogle Scholar
  6. Bengtsson L, Botzet M, Esch M (1995) Hurricane-type vortices in a general circulation model. Tellus 47:175–196. doi:  10.1034/j.1600-0870.1995.t01-1-00003.x CrossRefGoogle Scholar
  7. Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48:57–73. doi:  10.1034/j.1600-0870.1996.00004.x CrossRefGoogle Scholar
  8. Bengtsson L, Hodges KI, Esch M (2007) Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus A 59(4):396–416. doi:  10.1111/j.1600-0870.2007.00236.x CrossRefGoogle Scholar
  9. Broccoli AJ, Manabe S (1990) Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys Res Lett 17:1917–1920. doi:  10.1029/GL017i011p01917 CrossRefGoogle Scholar
  10. Camargo S, Emanuel K, Sobel A (2007) Tropical cyclone activity and global climate. J Clim 20:4819–4834. doi: 0.1175/JCLI4282.1
  11. Camargo SJ, Zebiak SE (2002) Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Weather Forecast 17(6):1152–1162CrossRefGoogle Scholar
  12. Camp J, Roberts M, MacLachlan C, Wallace E, Hermanson L, Brookshaw A, Arribas A, Scaife AA (2015) Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Q J R Meteorol Soc 141:2206–2219. doi:  10.1002/qj.2516 CrossRefGoogle Scholar
  13. Caron LP, Jones CG, Winger K (2011) Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity. Clim Dyn 37(5–6):869–892. doi:  10.1007/s00382-010-0846-7 CrossRefGoogle Scholar
  14. Chauvin F, Royer JF, Déqué M (2006) Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim Dyn 27(4):377–399. doi:  10.1007/s00382-006-0135-7 CrossRefGoogle Scholar
  15. Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131(8):1783–1796. doi:  10.1175//2562.1 CrossRefGoogle Scholar
  16. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRefGoogle Scholar
  17. Dennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St-Cyr A, Taylor MA, Worley PH (2012a) CAM-SE: a scalable spectral element dynamical core for the Community Atmosphere Model. Int J High Perform Comput Appl 26(1):74–89. doi:  10.1177/1094342011428142 CrossRefGoogle Scholar
  18. Dennis JM, Vertenstein M, Worley PH, Mirin AA, Craig AP, Jacob R, Mickelson S (2012b) Computational performance of ultra-high-resolution capability in the Community Earth System Model. Int J High Perform Comput Appl 26(1):5–16. doi:  10.1177/1094342012436965, http://hpc.sagepub.com/content/26/1/5.abstract, http://hpc.sagepub.com/content/26/1/5.full.pdf+html
  19. Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27:2271–2296CrossRefGoogle Scholar
  20. Donofrio D, Oliker L, Shalf J, Wehner MF, Rowen C, Krueger J, Kamil S, Mohiyuddin M (2009) Energy-efficient computing for extreme-scale science. Computer 42(11):62–71. http://doi.ieeecomputersociety.org/10.1109/MC.2009.353 CrossRefGoogle Scholar
  21. Emanuel K (1987) The dependence of hurricane intensity on climate. Nature 326:483–485CrossRefGoogle Scholar
  22. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688CrossRefGoogle Scholar
  23. Emanuel K (2007) Environmental factors affecting tropical cyclone power dissipation. J Clim 20:5497–5509CrossRefGoogle Scholar
  24. Emanuel K (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110(30):12219–12224. doi:  10.1073/pnas.1301293110 CrossRefGoogle Scholar
  25. Emanuel K, Nolan D (2004) Tropical cyclone activity and global climate. Preprints, 26th conference on hurricanes and tropical meteorology, Miami, pp 240–241 (Am Meteorol Soc)Google Scholar
  26. Gates WL (1992) AMIP: the Atmospheric Model Intercomparison Project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  27. Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon JH, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim 25:6461–6476CrossRefGoogle Scholar
  28. Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology over the tropical oceans, 21–25 Aug 1979, vol 77. Royal Meterological Society, Bracknell, pp 155–218Google Scholar
  29. Gray WM (1984) Atlantic seasonal hurricane frequency. Part I: El Niño and 30 MB Quasi-Biennial Oscillation influences. Mon Weather Rev 112(9):1649–1668. doi:  10.1175/1520-0493(1984)112$<$1649:ASHFPI$>$2.0.CO;2
  30. Grotjahn R, Black R, Leung R, Wehner MF, Barlow M, Bosilovich M, Gershunov A, Gutowski W, Katz RW, Lee YY, Lim YK, Prabhat (2015) North American extreme temperature events and related large scale meteorological patterns: statistical methods, dynamics, modeling, and trends. Clim Dyn 96:1–34. doi:  10.1007/s00382-015-2638-6
  31. Hashimoto A, Done JM, Fowler LD, Bruyère CL (2015) Tropical cyclone activity in nested regional and global grid-refined simulations. Clim Dyn 1–12. doi:  10.1007/s00382-015-2852-2
  32. Held IM, Zhao M (2011) The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J Clim 24:5353–5364. doi:  10.1175/JCLI-D-11-00050.1 CrossRefGoogle Scholar
  33. Hirons LC, Klingaman NP, Woolnough SJ (2015) MetUM-GOML1: a near-globally coupled atmosphere-ocean-mixed-layer model. Geosci Model Dev 8:363–379. doi:  10.5194/gmd-8-363-2015 CrossRefGoogle Scholar
  34. Holland GJ, Done JM, Douglas R, Ge M (2016, submitted) Global tropical cyclone damage potential. Technical Report, National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  35. Horn M, Walsh K, Zhao M, Camargo SJ, Scoccimarro E, Murakami H, Wang H, Ballinger A, Kumar A, Shaevitz DA, Jonas JA, Oouchi K (2014) Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J Clim 27(24):9197–9213. doi:  10.1175/JCLI-D-14-00200.1 CrossRefGoogle Scholar
  36. Kim D, Sobel AH, Del Genio AD, Chen Y, Camargo SJ, Yao MS, Kelley M, Nazarenko L (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25:4641–4659. doi:  10.1175/JCLI-D-11-00447.1 CrossRefGoogle Scholar
  37. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91:363–376. doi:  10.1175/2009BAMS2755.1 CrossRefGoogle Scholar
  38. Knutson TR, Tuleya RE, Shen W, Ginis I (2001) Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J Clim 14:2458–2468. doi:  10.1175/1520-0442(2001)014 CrossRefGoogle Scholar
  39. Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull Am Meteorol Soc 88:1549–1565. doi:  10.1175/BAMS-88-10-1549 CrossRefGoogle Scholar
  40. Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat Geosci 1:359–364. doi:  10.1038/ngeo202 CrossRefGoogle Scholar
  41. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi:  10.1038/ngeo779 CrossRefGoogle Scholar
  42. Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63CrossRefGoogle Scholar
  43. Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on Atlantic tropical cyclone counts. J Clim 23(10):2508–2519. doi:  10.1175/2009JCLI3034.1 CrossRefGoogle Scholar
  44. LaRow TE, Lim YK, Shin DW, Chassignet EP, Cocke S (2008) Atlantic basin seasonal hurricane simulations. J Clim 21(13):3191–3206. doi:  10.1175/2007JCLI2036.1 CrossRefGoogle Scholar
  45. Lawrence BN, Bennett VL, Churchill J, Juckes M, Kershaw P, Pascoe S, Pepler S, Pritchard M, Stephens A (2013) Storing and manipulating environmental big data with JASMIN. In: IEEE international conference on Big Data, 2013. IEEE, pp 68–75Google Scholar
  46. Li H, Sriver RL, Goes M (2015) Modeled sensitivity of the northwestern pacific upper-ocean response to tropical cyclones in a fully coupled climate model with varying ocean grid resolution. J Geophys Res: Oceans. doi:  10.1002/2015JC011226 Google Scholar
  47. Li Z, Yu W, Li T, Murty V, Tangang F (2013) Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle*. J Clim 26(3):1033–1046CrossRefGoogle Scholar
  48. Lin Y, Zhao M, Zhang M (2015) Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat Commun 6:6591. doi:  10.1038/ncomms7591 CrossRefGoogle Scholar
  49. Liu Y, Racah E, Prabhat, Correa J, Khosrowshahi A, Lavers D, Kunkel K, Wehner M, Collins WD (2016) Application of deep convolutional neural networks for detecting extreme weather in climate datasets. CoRR abs/1605.01156Google Scholar
  50. McClean J, Bader D, Bryan F, Maltrud M, Dennis J, Mirin A, Jones P, Kim Y, Ivanova D, Vertenstein M, Boyle J, Jacob R, Norton N, Craig A, Worley P (2011) A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Model 39:10–30. doi:  10.1016/j.ocemod.2011.02.011 CrossRefGoogle Scholar
  51. Mei W, Pasquero C (2013) Spatial and temporal characterization of sea surface temperature response to tropical cyclones*. J Clim 26(11):3745–3765. doi:  10.1175/JCLI-D-12-00125.1 CrossRefGoogle Scholar
  52. Mirin AA, Worley PH (2011) Improving the performance scalability of the community atmosphere model. Inter J High Perform Comput Appl. doi:  10.1177/1094342011412630 Google Scholar
  53. Mizielinski MS, Roberts MJ, Vidale PL, Schiemann R, Demory ME, Strachan J, Edwards T, Stephens A, Lawrence BN, Pritchard M, Chiu P, Iwi A, Churchill J, del Cano Novales C, Kettleborough J, Roseblade W, Selwood P, Foster M, Glover M, Malcolm A (2014) High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geosci Model Dev 7:1629–1640. doi:  10.5194/gmd-7-1629-2014 CrossRefGoogle Scholar
  54. Murakami H (2014) Tropical cyclones in reanalysis data sets. Geophys Res Lett 41(6):2133–2141. doi:  10.1002/2014GL059519 CrossRefGoogle Scholar
  55. Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. Sci Online Lett Atmos 6:73–76. doi:  10.2151/sola.2010-019 Google Scholar
  56. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM*. J Clim 25:3237–3260. doi:  10.1175/JCLI-D-11-00415.1 CrossRefGoogle Scholar
  57. Myhre G, Shindell D, Breon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing, book section 8. Cambridge University Press, Cambridge, UK/New York, pp 659–740. doi:  10.1017/CBO9781107415324.018, www.climatechange2013.org
  58. Neale RB, Chen CC, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Cameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, X Liu X, Rasch PJ, Taylor M (2012) Description of the NCAR community atmosphere model: CAM5.0. Technical Report NCAR/TN-486+STR;National Center for Atmospheric Research; Boulder, p 268ppGoogle Scholar
  59. Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda A (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J Meteorol Soc Jpn 84(2):259–276CrossRefGoogle Scholar
  60. Ooyama K (1969) Numerical simulation of the life cycle of tropical cyclones. J Atmos Sci 26:3–40. doi:  10.1175/1520-0469(1969)026$<$0003:NSOTLC$>$2.0.CO;2
  61. Patricola CM, Saravanan R, Chang P (2014) The impact of the El Niño – Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J Clim 27:5311–5328CrossRefGoogle Scholar
  62. Powell MD, Reinhold TA (2007) Tropical cyclone destructive potential by integrated kinetic energy. Bull Am Meteorol Soc 88(4):513–526CrossRefGoogle Scholar
  63. Prabhat, Rübel O, Byna S, Wu K, Li F, Wehner M, Bethel W (2012) TECA: a parallel toolkit for extreme climate analysis. Proc Comput Sci 9:866–876. doi:  10.1016/j.procs.2012.04.093. Proceedings of the international conference on computational science, 2012
  64. Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11(2):153–175CrossRefGoogle Scholar
  65. Reed KA, Jablonowski C (2011a) Assessing the uncertainty of tropical cyclone simulations in NCAR’s community atmosphere model. J Adv Model Earth Syst 3:M08002. doi:  10.1029/2011MS000076 CrossRefGoogle Scholar
  66. Reed KA, Jablonowski C (2011b) Impact of physical parameterizations on idealized tropical cyclones in the community atmosphere model. Geophys Res Lett 38:L04805. doi:  10.1029/2010GL046297 CrossRefGoogle Scholar
  67. Reed KA, Jablonowski C (2012) Idealized tropical cyclone simulations of intermediate complexity: a test case for AGCMs. J Adv Model Earth Syst 4:M04001. doi:  10.1029/2011MS000099 CrossRefGoogle Scholar
  68. Reed KA, Bacmeister JT, Wehner MF, Rosenbloom NA, Bates SC, Lauritzen PH, Truesdale JT, Hannay C (2015) Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys Res Lett 42(9):3603–3608. doi:  10.1002/2015GL063974 CrossRefGoogle Scholar
  69. Roberts MJ, Vidale PL, Mizielinski MS, Demory ME, Schiemann R, Strachan J, Hodges K, Bell R, Camp J (2015) Tropical cyclones in the upscale ensemble of high resolution global climate models. J Clim 28:574–596. doi:  10.1175/JCLI-D-14-00131.1 CrossRefGoogle Scholar
  70. Satoh M, Tomita H, Yashiro H, Miura H, Kodama C, Seiki T, Noda AT, Yamada Y, Goto D, Sawada M, Miyoshi T, Niwa Y, Hara M, Ohno T, Iga Si, Arakawa T, Inoue T, Kubokawa H (2014) The non-hydrostatic icosahedral atmospheric model: description and development. Prog Earth Planet Sci 1:18. doi:  10.1186/s40645-014-0018-1 CrossRefGoogle Scholar
  71. Schenkel BA, Hart RE (2012) An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J Clim 25(10):3453–3475. doi:  10.1175/2011JCLI4208.1 CrossRefGoogle Scholar
  72. Scoccimarro E, Gualdi S, Villarini G, Vecchi GA, Zhao M, Walsh K, Navarra A (2014) Intense precipitation events associated with landfalling tropical cyclones in response to a Warmer climate and increased CO2. J Clim 27:4642–4654. doi:  10.1175/JCLI-D-14-00065.1 CrossRefGoogle Scholar
  73. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118(4):1716–1733CrossRefGoogle Scholar
  74. Small RJ, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hsu HM et al (2014) A new synoptic scale resolving global climate simulation using the Community Earth System Model. J Adv Model Earth Syst 6(4):1065–1094. doi:  10.1002/2014MS000363 CrossRefGoogle Scholar
  75. Strachan J, Vidale PL, Hodges K, Roberts M, Demory ME (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26(1):133–152. doi:  10.1175/JCLI-D-12-00012.1 CrossRefGoogle Scholar
  76. Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. SOLA 5:164–167. doi:  10.2151/sola.2009-042 CrossRefGoogle Scholar
  77. Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. J Comput Phys 130:92–108CrossRefGoogle Scholar
  78. Taylor MA (2011) Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, Berlin/London, pp 357–380CrossRefGoogle Scholar
  79. Tsutsui Ji, Kasahara A (1996) Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J Geophys Res: Atmospheres 101(D10):15013–15032. doi:  10.1029/95JD03774 CrossRefGoogle Scholar
  80. Vecchi GA, Villarini G (2014) Next season’s hurricanes. Science 343:618–619. doi:  10.1126/science.1247759 CrossRefGoogle Scholar
  81. Villarini G, Lavers DA, Scoccimarro E, Zhao M, Wehner MF, Vecchi GA, Knutson TR, Reed KA (2014) Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J Clim 27:4622–4641. doi:  10.1175/JCLI-D-13-00780.1 CrossRefGoogle Scholar
  82. Vitart F, Anderson JL, Stern WF (1997) Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J Clim 10(4):745–760CrossRefGoogle Scholar
  83. Walsh KJE (2008) The ability of climate models to generate tropical cyclones: implications for prediction. In: Peretz L (ed) Climate change research progress. Nova Publishers, New York, pp 313–329Google Scholar
  84. Walsh KJE, Fiorino M, Landsea CW, McInnes KL (2007) Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J Clim 20:2307. doi:  10.1175/JCLI4074.1 CrossRefGoogle Scholar
  85. Walsh KJE, Camargo S, Vecchi G, Daloz AS, Elsner J, Emanuel K, Horn M, Lim YK, Roberts M, Patricola C, Scoccimarro E, Sobel A, Strazzo S, Villarini G, Wehner M, Zhao M, Kossin J, LaRow T, Oouchi K, Schubert S, Wang H, Bacmeister J, Chang P, Chauvin F, Jablonowski C, Kumar A, Murakami H, Ose T, Reed K, Saravanan S, Yamada Y, Zarzycki C, Vidale PL, Jonas J, Henderson N (2015) Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull Am Meteorol Soc 96:997–1017. doi:  10.1175/BAMS-D-13-00242.1
  86. Wehner MF, Bala G, Duffy P, Mirin AA, Romano R (2010) Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Adv Meteorol 2010:915303. doi:  10.1155/2010/915303 CrossRefGoogle Scholar
  87. Wehner MF, Oliker L, Shalf J, Donofrio D, Drummond LA, Heikes R, Kamil S, Kono C, Miller N, Miura H, Mohiyuddin M, Randall D, Yang WS (2011) Hardware/software co-design of global cloud system resolving models. J Adv Model Earth Syst 3(4):n/a–n/a. doi:  10.1029/2011MS000073, http://dx.doi.org/10.1029/2011MS000073, m10003
  88. Wehner MF, Reed KA, Li F, Prabhat, Bacmeister JT, Chen CT, Paciorek C, Gleckler PJ, Sperber KR, Collins WD, Gettelman A, Jablonowski C (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6(4):980–997. doi:  10.1002/2013MS000276 CrossRefGoogle Scholar
  89. Wehner MF, Prabhat, Reed KA, Stone D, Collins WD, Bacmeister JT (2015) Resolution dependence of future tropical cyclone projections of CAM5.1 in the US CLIVAR hurricane working group idealized configurations. J Clim 28:3905–3925. doi:  10.1175/JCLI-D-14-00311.1 CrossRefGoogle Scholar
  90. Wendel J (2006) Time to replace the Saffir–Simpson hurricane scale? Eos 87(1):3–6CrossRefGoogle Scholar
  91. Wendel J (2015) Does U.S. hurricane rating scale get the danger right? Eos 96. doi:  10.1029/2015EO034841
  92. Wu CM, Arakawa A (2014) A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J Atmos Sci 71:2089–2103. doi:  10.1175/JAS-D-13-0382.1 CrossRefGoogle Scholar
  93. Zarzycki CM, Jablonowski C (2014) A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J Adv Model Earth Syst 6:805–828. doi:  10.1002/2014MS000352 CrossRefGoogle Scholar
  94. Zarzycki CM, Jablonowski C (2015) Experimental tropical cyclone forecasts using a variable-resolution global model. Mon Weather Rev 143(10):4012–4037. doi:  10.1175/MWR-D-15-0159.1 CrossRefGoogle Scholar
  95. Zarzycki CM, Jablonowski C, Taylor MA (2014a) Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon Weather Rev 142(3):1221–1239. doi:  10.1175/MWR-D-13-00179.1 CrossRefGoogle Scholar
  96. Zarzycki CM, Levy MN, Jablonowski C, Overfelt JR, Taylor MA, Ullrich PA (2014b) Aquaplanet experiments using CAM’s variable-resolution dynamical core. J Clim 27(14):5481–5503. doi:  10.1175/JCLI-D-14-00004.1 CrossRefGoogle Scholar
  97. Zarzycki CM, Jablonowski C, Thatcher DR, Taylor MA (2015) Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J Clim 28(7):2777–2803. doi:  10.1175/JCLI-D-14-00599.1 CrossRefGoogle Scholar
  98. Zhao M, Held IM (2012) TC-Permitting GCM simulations of hurricane frequency response to Sea Surface Temperature anomalies projected for the late-twenty-first century. J Clim 25:2995–3009. doi:  10.1175/JCLI-D-11-00313.1 CrossRefGoogle Scholar
  99. Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678CrossRefGoogle Scholar
  100. Zhao M, Held IM, Lin SJ (2012) Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J Atmos Sci 69(7):2272–2283. doi:  10.1175/JAS-D-11-0238.1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.School of Marine and Atmospheric Sciences, Stony Brook UniversityStony BrookUSA
  3. 3.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations