Skip to main content

The Use of Global Climate Models for Tropical Cyclone Risk Assessment

  • Chapter
  • First Online:

Abstract

As tropical cyclones (TCs) make landfall in increasingly populated regions, the costs rise and are likely to continue rising in the future. The likely scenario of the TCs themselves changing in the future together with rising seas due to climate change will compound the problem. TC risk assessment needs to undergo a step change for society to properly confront this new era of TC risk. Next-generation global climate models (GCMs) are poised to bring about this change, and this chapter explores the potential role of GCMs in TC risk assessment. Long-term global climate model simulations are beginning to capture key TC characteristics that cause damage, thereby bringing a wealth of new risk-related information that presents a potentially powerful transformation of TC risk assessment. These physically based datasets will support better understanding of TC activity on longer timescales, exploration of events outside the range of the historical record, quantification of clustering, and discovery of teleconnected risks across TC basins. The integration of GCMs with risk assessment is a rapidly developing field, yet still in an exploratory phase, and a number of barriers need to be overcome including treatment of model error and understanding how to effectively integrate GCM information with risk assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adger WN, Barnett J, Brown K et al (2013) Cultural dimensions of climate change impacts and adaptation. Nat Clim Chang 3:112–117. doi:10.1038/nclimate1666

    Article  Google Scholar 

  • Arthur WC, Schofield A, Cechet RP, Sanabria LA (2008) Return period cyclonic wind hazard in the Australian Region. In: Abstracts of the 28th AMS conference on hurricanes and tropical meteorology, Orlando, Florida, USA, 28 April–2 May 2008

    Google Scholar 

  • Bacmeister JT, Reed KA, Hannay C et al (2016) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Chang. doi:10.1007/s10584-016-1750-x

  • Bender MA, Knutson TR, Tuleya RE et al (2010) Modeled impact of anthropogenic warning on the frequency of intense Atlantic hurricanes. Science 327:454–458. doi:10.1126/science.1180568

    Article  CAS  Google Scholar 

  • Beven JL, Stewart SR, Lawrence MB et al (2003) ANNUAL SUMMARY: atlantic hurricane season of 2001. Mon Weather Rev 131:1454–1484. doi:10.1175/1520-0493(2003)131<1454:ASHSO>2.0.CO;2

    Article  Google Scholar 

  • Blake ES, Kimberlain TB, Berg RJ et al (2013) Tropical cyclone report: hurricane sandy. Natl Hurricane Cent 12:1–10

    Google Scholar 

  • Bonazzi A, Dobbin AL, Turner JK et al (2014) A simulation approach for estimating hurricane risk over a 5-yr horizon. Weather Clim Soc 6:77–90. doi:10.1175/WCAS-D-13-00025.1

    Article  Google Scholar 

  • Bove MC, O’Brien JJ, Eisner JB et al (1998) Effect of el niño on U.S. landfalling hurricanes, revisited. Bull Am Meteorol Soc 79:2477–2482. doi:10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2

    Article  Google Scholar 

  • Burby RJ (ed) (1998) Cooperating with nature: confronting natural hazards with land-use planning for sustainable communities. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Camargo SJ, Robertson AW, Gaffney SJ et al (2007) Cluster analysis of typhoon tracks. Part II: large-scale circulation and ENSO. J Climate 20:3654–3676. doi:10.1175/JCLI4203.1

    Article  Google Scholar 

  • Cash DW, Clark WC, Alcock F et al (2003) Knowledge systems for sustainable development. Proc Natl Acad Sci 100:8086–8091. doi:10.1073/pnas.1231332100

    Article  CAS  Google Scholar 

  • Church JA, Clark PU, Cazenave A et al (2013) Sea level change. In: Stocker TF, Qin G-K, Plattner M et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 1137–1216

    Google Scholar 

  • Czajkowski J, Done JM (2014) As the wind blows? Developing a deeper understanding of hurricane damages from a case study analysis. Weather Clim Soc 6(2):202–217

    Article  Google Scholar 

  • Dilling L, Lemos MC (2011) Creating usable science: opportunities and constraints for climate knowledge use and their implications for science policy. Glob Environ Chang 21(2):680–689. doi:10.1016/j.gloenvcha.2010.11.006

    Article  Google Scholar 

  • Done JM, Bruyère CL, Ge M, Jaye A (2014) Internal variability of North Atlantic tropical cyclones. J Geophys Res Atmos 119:6506–6519. doi:10.1002/2014JD021542

    Article  Google Scholar 

  • Done JM, PaiMazumder D, Towler E, Kishtawal CM (2015) Estimating impacts of North Atlantic tropical cyclones using an index of damage potential. Clim Chang. doi: 10.1007/s10584-015-1513-0

  • Douglas R (2011) Financial markets drive demand for climate models. WMO Bull 60:34–37

    Google Scholar 

  • Elsner JB, Bossak BH (2004) Hurricane landfall probability and climate. In: Murnane RJ, Liu KB (eds) Hurricanes and typhoons: past, present, and future. Columbia University Press. New York

    Google Scholar 

  • Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi:10.1038/nature07234

    Article  CAS  Google Scholar 

  • Elsner JB, Burch RK, Jagger TH (2009) Catastrophe finance: an emerging discipline. Eos Trans Ame Geophys Union 90:281. doi:10.1029/2009EO330001

    Article  Google Scholar 

  • Emanuel K (1991) The theory of hurricanes. Annu Rev Fluid Mech 23:179–196. doi:10.1146/annurev.fl.23.010191.001143

    Article  Google Scholar 

  • Emanuel K (2011) Global warming effects on U.S. hurricane damage. Weather Clim Soc 3:261–268. doi:10.1175/WCAS-D-11-00007.1

    Article  Google Scholar 

  • Emanuel K (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110:12219. doi:10.1073/pnas.1301293110

    Article  CAS  Google Scholar 

  • Emanuel K, Ravela S, Vivant E, Risi C (2006) A statistical deterministic approach to hurricane risk assessment. Bull Am Meteorol Soc 87:299–314. doi:10.1175/BAMS-87-3-299

    Article  Google Scholar 

  • Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. doi:10.1175/BAMS-89-3-347

    Article  Google Scholar 

  • Gentry MS, Lackmann GM (2010) Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon Weather Rev 138:688–704. doi:10.1175/2009MWR2976.1

    Article  Google Scholar 

  • Goh AZ-C, Chan JCL (2010) Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int J Climatol 30:827–843. doi:10.1002/joc.1943

    Google Scholar 

  • Grieser J, Jewson S (2012) The RMS TC-rain model. Meteorol Z 21(1):79–88

    Article  Google Scholar 

  • Grossi P, Kunreuther H, Patel CC (eds) (2005) Catastrophe modeling: a new approach to managing risk. Springer US, Boston

    Google Scholar 

  • Hall TM, Jewson S (2007) Statistical modelling of North Atlantic tropical cyclone tracks. Tellus A 59:486–498. doi:10.1111/j.1600-0870.2007.00240.x

    Article  Google Scholar 

  • Hall TM, Sobel AH (2013) On the impact angle of hurricane Sandy’s New Jersey landfall. Geophys Res Lett 40:2312–2315. doi:10.1002/grl.50395

    Article  Google Scholar 

  • Hashimoto A, Done JM, Fowler LD, Bruyere CL (2015) Tropical cyclone activity in nested regional and global grid-refined simulations. Clim Dyn 47:497–508. doi:10.1007/s00382-015-2852-2

  • Hill KA, Lackmann GM (2011) The impact of future climate change on TC intensity and structure: a downscaling approach. J Climate 24:4644–4661. doi:10.1175/2011JCLI3761.1

    Article  Google Scholar 

  • Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541. doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2

    Article  Google Scholar 

  • Holland GJ, Bruyère CL (2014) Recent intense hurricane response to global climate change. Climate Dynam 42:617. doi:10.1007/s00382-013-1713-0

    Article  Google Scholar 

  • Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the north Atlantic: natural variability or climate trend? Philos Trans R Soc A 365:2695–2716

    Article  Google Scholar 

  • Holland GJ, Belanger JI, Fritz A (2010) A revised model for radial profiles of hurricane winds. Mon Weather Rev 138:4393–4401. doi:10.1175/2010MWR3317.1

    Article  Google Scholar 

  • Holland GJ, Done JM, Ge M, Douglas R (2016) An index for cyclone damage potential. In: Abstracts of the 32nd conference on Hurricanes and Tropical Meteorology, San Juan, PR, USA, 17–22 April 2016

    Google Scholar 

  • Höppe P, Pielke Jr RA (eds) (2006) Workshop on climate change and disaster losses: understanding and attributing trends and projections, final workshop report. Hohenkammer, Germany, 25–26 May 2006

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF et al (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 3–21

    Google Scholar 

  • Jagger TH, Elsner JB (2012) Hurricane clusters in the vicinity of Florida. J Appl Meteorol 51:869–877. doi:10.1175/JAMC-D-11-0107.1

    Article  Google Scholar 

  • Kaplan J, DeMaria M (1995) A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J Appl Meteorol 34:2499–2512. doi:10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2

    Article  Google Scholar 

  • Kay JE, Deser C, Phillips A et al (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi:10.1175/BAMS-D-13-00255.1

    Article  Google Scholar 

  • Khare SP, Bonazzi A, West N et al (2009) On the modelling of over-ocean hurricane surface winds and their uncertainty. QJR Meteorol Soc 135:1350–1365. doi:10.1002/qj.442

    Article  Google Scholar 

  • King RO (2013) Financing natural catastrophe exposure: issues and options for improving risk transfer markets. Congressional Research Service, Library of Congress

    Google Scholar 

  • Knutson TR, McBride JL, Chan J et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi:10.1038/ngeo779

    Article  CAS  Google Scholar 

  • Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352. doi:10.1038/nature13278

    Article  CAS  Google Scholar 

  • Kunreuther H, Michel-Kerjan E (2009) At war with the weather: managing large-scale risks in a new era of catastrophes. MIT Press, New York, NY

    Book  Google Scholar 

  • Landsea C (2007) Counting Atlantic tropical cyclones back to 1900. Eos Trans AGU 88:197–202. doi:10.1029/2007EO180001

    Article  Google Scholar 

  • Langousis A, Veneziano D (2009) Long-term rainfall risk from tropical cyclones in coastal areas. Water Resour Res 45:W11430. doi:10.1029/2008WR007624

    Article  Google Scholar 

  • Lin N, Emanuel K (2016) Grey swan tropical cyclones. Nat Clim Chang 6:106–111. doi:10.1038/nclimate2777

    Article  Google Scholar 

  • Lin N, Emanuel KA, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Chang 2(6):462–467. doi:10.1038/nclimate1389

    Article  Google Scholar 

  • Lloyd’s (2011) Managing the escalating risks of natural catastrophes in the United States. https://www.lloyds.com/news-and-insight/risk-insight/library/natural-environment/us-nat-cat-report. Accessed 1 July 2016

  • Lonfat M, Rogers R, Marchok T, Marks FD (2007) A parametric model for predicting hurricane rainfall. Mon Weather Rev 135:3086–3097. doi:10.1175/MWR3433.1

    Article  Google Scholar 

  • Loridan T, Khare S, Scherer E et al (2015) Parametric modeling of transitioning cyclone wind fields for risk assessment studies in the Western North Pacific. J Appl Meteorol Climatol 54:624–642. doi:10.1175/JAMC-D-14-0095.1

    Article  Google Scholar 

  • McDonald RE, Bleaken DG, Cresswell DR et al (2005) Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Climate Dynam 25:19–36. doi:10.1007/s00382-004-0491-0

    Article  Google Scholar 

  • Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical storm damages. Nat Clim Chang 2:205–209. doi:10.1038/nclimate1357

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M et al (2008) Stationarity is dead: whither water management? Science 319:573–574. doi:10.1126/science.1151915

    Article  CAS  Google Scholar 

  • Morss RE, Wilhelmi OV, Meehl GA, Dilling L (2011) Improving societal outcomes of extreme weather in a changing climate: an integrated perspective. Annu Rev Environ Resour 36:1–25. doi:10.1146/annurev-environ-060809-100145

    Article  Google Scholar 

  • Mumby PJ, Vitolo R, Stephenson DB (2011) Temporal clustering of tropical cyclones and its ecosystem impacts. Proc Natl Acad Sci 108:17626–17630. doi:10.1073/pnas.1100436108

    Article  CAS  Google Scholar 

  • Munich Re (2016) Topics Geo: natural catastrophes 2015 analyses, assessments, positions. Available at: www.munichre.com/topicsgeo2015

  • Murakami H, Wang Y, Yoshimura H et al (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Climate 25:3237–3260. doi:10.1175/JCLI-D-11-00415.1

    Article  Google Scholar 

  • Pielke RA Jr, Gratz J, Landsea CW et al (2008) Normalized hurricane damage in the United States: 1900–2005. Nat Hazards Rev. doi:10.1061/ASCE1527-698820089

    Google Scholar 

  • Raible CC, Kleppek S, Wuest M et al (2012) Atlantic hurricanes and associate insurance loss potentials in future climate scenarios: limitations of high-resolution AGCM simulations. Tellus A 64:15672. doi:10.3402/tellusa.64i0.15672

    Article  Google Scholar 

  • Ranger N, Niehörster F (2012) Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments. Glob Environ Chang 22:703–712. doi:10.1016/j.gloenvcha.2012.03.009

    Article  Google Scholar 

  • Rhein M et al (2013) Observations: ocean. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Roberts MJ, Vidale PL, Mizielinski MS et al (2015) Tropical cyclones in the upscale ensemble of high resolution global climate models. J Climate 28:574–596. doi:10.1175/JCLI871D-14-00131.1

    Article  Google Scholar 

  • Rumpf J, Weindl H, Höppe P et al (2007) Stochastic modelling of tropical cyclone tracks. Math Meth Oper Res 66:475–490. doi:10.1007/s00186-007-0168-7

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    CAS  Google Scholar 

  • Schenkel BA, Hart RE (2015) An analysis of the environmental moisture impacts of Western North Pacific tropical cyclones. J Climate 28:2600–2622. doi:10.1175/JCLI-D-14-00213.1

    Article  Google Scholar 

  • Schmidt S, Kemfert C, Höppe P (2010) The impact of socio-economics and climate change on tropical cyclone losses in the USA. Reg Environ Chang 10:13–26. doi:10.1007/s10113-008-0082-4

    Article  Google Scholar 

  • Shackley S, Young P, Parkinson S, Wynne B (1998) Uncertainty, complexity and concepts of good science in climate change modelling: are GCMs the best tools? Clim Change 38:159–205. doi:10.1023/A:1005310109968

    Article  Google Scholar 

  • Shaevitz DA, Camargo SJ, Sobel AH et al (2014) Characteristics of tropical cyclones in high-resolution models in the present climate. J Adv Model Earth Syst 6:1154–1172. doi:10.1002/2014MS000372

    Article  Google Scholar 

  • Sheikh PA (2005) The impact of hurricane Katrina on biological resources. Congressional Research Service, Library of Congress

    Google Scholar 

  • Slingo J, Bates K, Nikiforakis N et al (2009) Developing the next-generation climate system models: challenges and achievements. Philos Trans R Soc London A: Math, Phys Eng Sci 367:815–831. doi:10.1098/rsta.2008.0207

    Article  Google Scholar 

  • Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazards 67:387–410. doi:10.1007/s11069-013-0566-5

    Article  Google Scholar 

  • Solomon S et al (eds) (2007) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the IPCC, vol. 4. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stewart M, Rosowsky D, Huang Z (2003) Hurricane risks and economic viability of strengthened construction. Nat Hazards Rev 4:12–19. doi:10.1061/(ASCE)1527-6988(2003)4:1(12)

    Article  Google Scholar 

  • Strachan J (2007) The use of high-resolution global climate models for climate risk assessment. Catastrophe Modelling Forum Paper. New York

    Google Scholar 

  • Strachan J, Vidale PL, Hodges K et al (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Climate 26(1):133–152. doi:10.1175/JCLI-D-12-00012.1

    Article  Google Scholar 

  • Strazzo S, Elsner JB, LaRow T et al (2013) Observed versus GCM-generated local tropical cyclone frequency: comparisons using a spatial lattice. J Climate 26:8257–8268. doi:10.1175/JCLI-D-12-00808.1

    Article  Google Scholar 

  • Tye MR, Stephenson DB, Holland GJ, Katz RW (2014) A Weibull approach for improving climate model projections of tropical cyclone wind-speed distributions. J Climate 27:6119–6133. doi:10.1175/JCLI-D-14-00121.1

    Article  Google Scholar 

  • Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone activity. J Climate 21:3580–3600. doi:10.1175/2008JCLI2178.1

    Article  Google Scholar 

  • Vickery PJ, Skerlj P, Twisdale L (2000a) Simulation of hurricane risk in the U.S. using empirical track model. J Struct Eng 10:1222–1237. doi:10.1061/(ASCE)07339445(2000)126

    Article  Google Scholar 

  • Vickery PJ, Skerlj P, Steckley A, Twisdale L (2000b) Hurricane wind field model for use in hurricane simulations. J Struct Eng 126(10):1203–1221

    Article  Google Scholar 

  • Vickery PJ, Masters FJ, Powell MD, Wadhera D (2009) Hurricane hazard modeling: the past, present, and future. J Wind Eng Ind Aerodyn. doi:10.1016/j.jweia.2009.05.005

    Google Scholar 

  • Villarini G, Vecchi GA (2012a) Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J Climate 26:3231–3240. doi:10.1175/JCLI-D-12-00441.1

    Article  Google Scholar 

  • Villarini G, Vecchi GA (2012b) Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat Clim Chang 2:604–607. doi:10.1038/nclimate1530

    Article  CAS  Google Scholar 

  • Villarini G, Vecchi GA, Smith JA (2012) U.S. landfalling and North Atlantic hurricanes: statistical modeling of their frequencies and ratios. Mon Weather Rev 140:44–65

    Article  Google Scholar 

  • Villarini G, Lavers DA, Scoccimarro E, Zhao M et al (2014) Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J Climate 27:4622–4641. doi:10.1175/JCLI-D-13-00780

    Article  Google Scholar 

  • Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L07709. doi:10.1029/2007GL029683

    Article  Google Scholar 

  • Vitolo R, Strachan J, Vidale PL, et al (2010) A global climate model based event set for tropical cyclone risk assessment in the West Pacific. In: Abstracts from EGU general assembly, Vienna, Austria, 2–7 May 2010

    Google Scholar 

  • Walsh KJE, McBride JL, Klotzbach PJ et al (2016) Tropical cyclones and climate change. WIREs Clim Chang 7:65–89. doi:10.1002/wcc371

    Article  Google Scholar 

  • Wang C, Lee S-K, Enfield DB (2008) Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi:10.1029/2007GC001809

    Google Scholar 

  • Wang S, Toumi R, Czaja A, Kan AV (2015) An analytic model of tropical cyclone wind profiles. Q J R Meteorol Soc 141:3018–3029. doi:10.1002/qj.2586

    Article  Google Scholar 

  • Weinkle J, Maue R, Pielke R (2012) Historical global tropical cyclone landfalls*. J Climate 25:4729–4735. doi:10.1175/JCLI-D-11-00719.1

    Article  Google Scholar 

  • Weller H, Ringler T, Piggott M, Wood N (2010) Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull Am Meteorol Soc 91:105–108. doi:10.1175/2009BAMS2907.1

    Article  Google Scholar 

  • Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65:180–185. doi:10.1002/wea.543

    Article  Google Scholar 

  • Willoughby HE, Darling RWR, Rahn ME (2006) Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles. Mon Weather Rev 134:1102–1120. doi:10.1175/MWR3106.1

    Article  Google Scholar 

  • World Bank (2014) Understanding risk: review of open source and open access software packages available to quantify risk from natural hazards. World Bank Group, Washington, DC

    Google Scholar 

  • Xuan Z, Chang N-B (2014) Modeling the climate-induced changes of lake ecosystem structure under the cascade impacts of hurricanes and droughts. Ecol Model 288:79–93. doi:10.1016/j.ecolmodel.2014.05.014

    Article  Google Scholar 

  • Zarzycki C, Jablonowski C (2015) Experimental tropical cyclone forecasts using a variable-resolution global model. Mon Weather Rev 143:4012–4037. doi:10.1175/MWR-D-15-0159.1

    Article  Google Scholar 

  • Zhai AR, Jiang JH (2014) Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ Res Lett 9:64019. doi:10.1088/1748-9326/9/6/064019

    Article  Google Scholar 

  • Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Climate 22:6653–6678. doi:10.1175/2009JCLI3049.1

    Article  Google Scholar 

  • Zhao M et al (2013) Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency. US CLIVAR Var 11:17–23

    Google Scholar 

  • Zhu P (2008) A multiple scale modeling system for coastal hurricane wind damage mitigation. Nat Hazards 47:577–591. doi:10.1007/s11069-008-9240-8

    Article  Google Scholar 

Download references

Acknowledgments

The National Center for Atmospheric Research is supported by the National Science Foundation. This work was partially supported by the Willis Research Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Cobb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cobb, A., Done, J. (2017). The Use of Global Climate Models for Tropical Cyclone Risk Assessment. In: Collins, J., Walsh, K. (eds) Hurricanes and Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-47594-3_7

Download citation

Publish with us

Policies and ethics