The Use of Global Climate Models for Tropical Cyclone Risk Assessment



As tropical cyclones (TCs) make landfall in increasingly populated regions, the costs rise and are likely to continue rising in the future. The likely scenario of the TCs themselves changing in the future together with rising seas due to climate change will compound the problem. TC risk assessment needs to undergo a step change for society to properly confront this new era of TC risk. Next-generation global climate models (GCMs) are poised to bring about this change, and this chapter explores the potential role of GCMs in TC risk assessment. Long-term global climate model simulations are beginning to capture key TC characteristics that cause damage, thereby bringing a wealth of new risk-related information that presents a potentially powerful transformation of TC risk assessment. These physically based datasets will support better understanding of TC activity on longer timescales, exploration of events outside the range of the historical record, quantification of clustering, and discovery of teleconnected risks across TC basins. The integration of GCMs with risk assessment is a rapidly developing field, yet still in an exploratory phase, and a number of barriers need to be overcome including treatment of model error and understanding how to effectively integrate GCM information with risk assessment.


Catastrophe modeling Climate change Correlated risk Exposure Event sets Global climate model Historical record Tropical cyclone climate Tropical cyclone duration Tropical cyclone impacts Tropical cyclone risk assessment Tropical cyclone size Non-stationarity Statistical-dynamical modeling Vulnerability 



The National Center for Atmospheric Research is supported by the National Science Foundation. This work was partially supported by the Willis Research Network.


  1. Adger WN, Barnett J, Brown K et al (2013) Cultural dimensions of climate change impacts and adaptation. Nat Clim Chang 3:112–117. doi: 10.1038/nclimate1666 CrossRefGoogle Scholar
  2. Arthur WC, Schofield A, Cechet RP, Sanabria LA (2008) Return period cyclonic wind hazard in the Australian Region. In: Abstracts of the 28th AMS conference on hurricanes and tropical meteorology, Orlando, Florida, USA, 28 April–2 May 2008Google Scholar
  3. Bacmeister JT, Reed KA, Hannay C et al (2016) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Chang. doi: 10.1007/s10584-016-1750-x
  4. Bender MA, Knutson TR, Tuleya RE et al (2010) Modeled impact of anthropogenic warning on the frequency of intense Atlantic hurricanes. Science 327:454–458. doi: 10.1126/science.1180568 CrossRefGoogle Scholar
  5. Beven JL, Stewart SR, Lawrence MB et al (2003) ANNUAL SUMMARY: atlantic hurricane season of 2001. Mon Weather Rev 131:1454–1484. doi: 10.1175/1520-0493(2003)131<1454:ASHSO>2.0.CO;2 CrossRefGoogle Scholar
  6. Blake ES, Kimberlain TB, Berg RJ et al (2013) Tropical cyclone report: hurricane sandy. Natl Hurricane Cent 12:1–10Google Scholar
  7. Bonazzi A, Dobbin AL, Turner JK et al (2014) A simulation approach for estimating hurricane risk over a 5-yr horizon. Weather Clim Soc 6:77–90. doi: 10.1175/WCAS-D-13-00025.1 CrossRefGoogle Scholar
  8. Bove MC, O’Brien JJ, Eisner JB et al (1998) Effect of el niño on U.S. landfalling hurricanes, revisited. Bull Am Meteorol Soc 79:2477–2482. doi: 10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2 CrossRefGoogle Scholar
  9. Burby RJ (ed) (1998) Cooperating with nature: confronting natural hazards with land-use planning for sustainable communities. Joseph Henry Press, Washington, DCGoogle Scholar
  10. Camargo SJ, Robertson AW, Gaffney SJ et al (2007) Cluster analysis of typhoon tracks. Part II: large-scale circulation and ENSO. J Climate 20:3654–3676. doi: 10.1175/JCLI4203.1 CrossRefGoogle Scholar
  11. Cash DW, Clark WC, Alcock F et al (2003) Knowledge systems for sustainable development. Proc Natl Acad Sci 100:8086–8091. doi: 10.1073/pnas.1231332100 CrossRefGoogle Scholar
  12. Church JA, Clark PU, Cazenave A et al (2013) Sea level change. In: Stocker TF, Qin G-K, Plattner M et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 1137–1216Google Scholar
  13. Czajkowski J, Done JM (2014) As the wind blows? Developing a deeper understanding of hurricane damages from a case study analysis. Weather Clim Soc 6(2):202–217CrossRefGoogle Scholar
  14. Dilling L, Lemos MC (2011) Creating usable science: opportunities and constraints for climate knowledge use and their implications for science policy. Glob Environ Chang 21(2):680–689. doi: 10.1016/j.gloenvcha.2010.11.006 CrossRefGoogle Scholar
  15. Done JM, Bruyère CL, Ge M, Jaye A (2014) Internal variability of North Atlantic tropical cyclones. J Geophys Res Atmos 119:6506–6519. doi: 10.1002/2014JD021542 CrossRefGoogle Scholar
  16. Done JM, PaiMazumder D, Towler E, Kishtawal CM (2015) Estimating impacts of North Atlantic tropical cyclones using an index of damage potential. Clim Chang. doi:  10.1007/s10584-015-1513-0
  17. Douglas R (2011) Financial markets drive demand for climate models. WMO Bull 60:34–37Google Scholar
  18. Elsner JB, Bossak BH (2004) Hurricane landfall probability and climate. In: Murnane RJ, Liu KB (eds) Hurricanes and typhoons: past, present, and future. Columbia University Press. New YorkGoogle Scholar
  19. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi: 10.1038/nature07234 CrossRefGoogle Scholar
  20. Elsner JB, Burch RK, Jagger TH (2009) Catastrophe finance: an emerging discipline. Eos Trans Ame Geophys Union 90:281. doi: 10.1029/2009EO330001 CrossRefGoogle Scholar
  21. Emanuel K (1991) The theory of hurricanes. Annu Rev Fluid Mech 23:179–196. doi: 10.1146/annurev.fl.23.010191.001143 CrossRefGoogle Scholar
  22. Emanuel K (2011) Global warming effects on U.S. hurricane damage. Weather Clim Soc 3:261–268. doi: 10.1175/WCAS-D-11-00007.1 CrossRefGoogle Scholar
  23. Emanuel K (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110:12219. doi: 10.1073/pnas.1301293110 CrossRefGoogle Scholar
  24. Emanuel K, Ravela S, Vivant E, Risi C (2006) A statistical deterministic approach to hurricane risk assessment. Bull Am Meteorol Soc 87:299–314. doi: 10.1175/BAMS-87-3-299 CrossRefGoogle Scholar
  25. Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. doi: 10.1175/BAMS-89-3-347 CrossRefGoogle Scholar
  26. Gentry MS, Lackmann GM (2010) Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon Weather Rev 138:688–704. doi: 10.1175/2009MWR2976.1 CrossRefGoogle Scholar
  27. Goh AZ-C, Chan JCL (2010) Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int J Climatol 30:827–843. doi: 10.1002/joc.1943 Google Scholar
  28. Grieser J, Jewson S (2012) The RMS TC-rain model. Meteorol Z 21(1):79–88CrossRefGoogle Scholar
  29. Grossi P, Kunreuther H, Patel CC (eds) (2005) Catastrophe modeling: a new approach to managing risk. Springer US, BostonGoogle Scholar
  30. Hall TM, Jewson S (2007) Statistical modelling of North Atlantic tropical cyclone tracks. Tellus A 59:486–498. doi: 10.1111/j.1600-0870.2007.00240.x CrossRefGoogle Scholar
  31. Hall TM, Sobel AH (2013) On the impact angle of hurricane Sandy’s New Jersey landfall. Geophys Res Lett 40:2312–2315. doi: 10.1002/grl.50395 CrossRefGoogle Scholar
  32. Hashimoto A, Done JM, Fowler LD, Bruyere CL (2015) Tropical cyclone activity in nested regional and global grid-refined simulations. Clim Dyn 47:497–508. doi: 10.1007/s00382-015-2852-2
  33. Hill KA, Lackmann GM (2011) The impact of future climate change on TC intensity and structure: a downscaling approach. J Climate 24:4644–4661. doi: 10.1175/2011JCLI3761.1 CrossRefGoogle Scholar
  34. Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541. doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2 CrossRefGoogle Scholar
  35. Holland GJ, Bruyère CL (2014) Recent intense hurricane response to global climate change. Climate Dynam 42:617. doi: 10.1007/s00382-013-1713-0 CrossRefGoogle Scholar
  36. Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the north Atlantic: natural variability or climate trend? Philos Trans R Soc A 365:2695–2716CrossRefGoogle Scholar
  37. Holland GJ, Belanger JI, Fritz A (2010) A revised model for radial profiles of hurricane winds. Mon Weather Rev 138:4393–4401. doi: 10.1175/2010MWR3317.1 CrossRefGoogle Scholar
  38. Holland GJ, Done JM, Ge M, Douglas R (2016) An index for cyclone damage potential. In: Abstracts of the 32nd conference on Hurricanes and Tropical Meteorology, San Juan, PR, USA, 17–22 April 2016Google Scholar
  39. Höppe P, Pielke Jr RA (eds) (2006) Workshop on climate change and disaster losses: understanding and attributing trends and projections, final workshop report. Hohenkammer, Germany, 25–26 May 2006Google Scholar
  40. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF et al (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 3–21Google Scholar
  41. Jagger TH, Elsner JB (2012) Hurricane clusters in the vicinity of Florida. J Appl Meteorol 51:869–877. doi: 10.1175/JAMC-D-11-0107.1 CrossRefGoogle Scholar
  42. Kaplan J, DeMaria M (1995) A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J Appl Meteorol 34:2499–2512. doi: 10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2 CrossRefGoogle Scholar
  43. Kay JE, Deser C, Phillips A et al (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi: 10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  44. Khare SP, Bonazzi A, West N et al (2009) On the modelling of over-ocean hurricane surface winds and their uncertainty. QJR Meteorol Soc 135:1350–1365. doi: 10.1002/qj.442 CrossRefGoogle Scholar
  45. King RO (2013) Financing natural catastrophe exposure: issues and options for improving risk transfer markets. Congressional Research Service, Library of CongressGoogle Scholar
  46. Knutson TR, McBride JL, Chan J et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi: 10.1038/ngeo779 CrossRefGoogle Scholar
  47. Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352. doi: 10.1038/nature13278 CrossRefGoogle Scholar
  48. Kunreuther H, Michel-Kerjan E (2009) At war with the weather: managing large-scale risks in a new era of catastrophes. MIT Press, New York, NYCrossRefGoogle Scholar
  49. Landsea C (2007) Counting Atlantic tropical cyclones back to 1900. Eos Trans AGU 88:197–202. doi: 10.1029/2007EO180001 CrossRefGoogle Scholar
  50. Langousis A, Veneziano D (2009) Long-term rainfall risk from tropical cyclones in coastal areas. Water Resour Res 45:W11430. doi: 10.1029/2008WR007624 CrossRefGoogle Scholar
  51. Lin N, Emanuel K (2016) Grey swan tropical cyclones. Nat Clim Chang 6:106–111. doi: 10.1038/nclimate2777 CrossRefGoogle Scholar
  52. Lin N, Emanuel KA, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Chang 2(6):462–467. doi: 10.1038/nclimate1389 CrossRefGoogle Scholar
  53. Lloyd’s (2011) Managing the escalating risks of natural catastrophes in the United States. Accessed 1 July 2016
  54. Lonfat M, Rogers R, Marchok T, Marks FD (2007) A parametric model for predicting hurricane rainfall. Mon Weather Rev 135:3086–3097. doi: 10.1175/MWR3433.1 CrossRefGoogle Scholar
  55. Loridan T, Khare S, Scherer E et al (2015) Parametric modeling of transitioning cyclone wind fields for risk assessment studies in the Western North Pacific. J Appl Meteorol Climatol 54:624–642. doi: 10.1175/JAMC-D-14-0095.1 CrossRefGoogle Scholar
  56. McDonald RE, Bleaken DG, Cresswell DR et al (2005) Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Climate Dynam 25:19–36. doi: 10.1007/s00382-004-0491-0 CrossRefGoogle Scholar
  57. Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical storm damages. Nat Clim Chang 2:205–209. doi: 10.1038/nclimate1357 CrossRefGoogle Scholar
  58. Milly PCD, Betancourt J, Falkenmark M et al (2008) Stationarity is dead: whither water management? Science 319:573–574. doi: 10.1126/science.1151915 CrossRefGoogle Scholar
  59. Morss RE, Wilhelmi OV, Meehl GA, Dilling L (2011) Improving societal outcomes of extreme weather in a changing climate: an integrated perspective. Annu Rev Environ Resour 36:1–25. doi: 10.1146/annurev-environ-060809-100145 CrossRefGoogle Scholar
  60. Mumby PJ, Vitolo R, Stephenson DB (2011) Temporal clustering of tropical cyclones and its ecosystem impacts. Proc Natl Acad Sci 108:17626–17630. doi: 10.1073/pnas.1100436108 CrossRefGoogle Scholar
  61. Munich Re (2016) Topics Geo: natural catastrophes 2015 analyses, assessments, positions. Available at:
  62. Murakami H, Wang Y, Yoshimura H et al (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Climate 25:3237–3260. doi: 10.1175/JCLI-D-11-00415.1 CrossRefGoogle Scholar
  63. Pielke RA Jr, Gratz J, Landsea CW et al (2008) Normalized hurricane damage in the United States: 1900–2005. Nat Hazards Rev. doi: 10.1061/ASCE1527-698820089 Google Scholar
  64. Raible CC, Kleppek S, Wuest M et al (2012) Atlantic hurricanes and associate insurance loss potentials in future climate scenarios: limitations of high-resolution AGCM simulations. Tellus A 64:15672. doi: 10.3402/tellusa.64i0.15672 CrossRefGoogle Scholar
  65. Ranger N, Niehörster F (2012) Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments. Glob Environ Chang 22:703–712. doi: 10.1016/j.gloenvcha.2012.03.009 CrossRefGoogle Scholar
  66. Rhein M et al (2013) Observations: ocean. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  67. Roberts MJ, Vidale PL, Mizielinski MS et al (2015) Tropical cyclones in the upscale ensemble of high resolution global climate models. J Climate 28:574–596. doi: 10.1175/JCLI871D-14-00131.1 CrossRefGoogle Scholar
  68. Rumpf J, Weindl H, Höppe P et al (2007) Stochastic modelling of tropical cyclone tracks. Math Meth Oper Res 66:475–490. doi: 10.1007/s00186-007-0168-7 CrossRefGoogle Scholar
  69. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  70. Schenkel BA, Hart RE (2015) An analysis of the environmental moisture impacts of Western North Pacific tropical cyclones. J Climate 28:2600–2622. doi: 10.1175/JCLI-D-14-00213.1 CrossRefGoogle Scholar
  71. Schmidt S, Kemfert C, Höppe P (2010) The impact of socio-economics and climate change on tropical cyclone losses in the USA. Reg Environ Chang 10:13–26. doi: 10.1007/s10113-008-0082-4 CrossRefGoogle Scholar
  72. Shackley S, Young P, Parkinson S, Wynne B (1998) Uncertainty, complexity and concepts of good science in climate change modelling: are GCMs the best tools? Clim Change 38:159–205. doi: 10.1023/A:1005310109968 CrossRefGoogle Scholar
  73. Shaevitz DA, Camargo SJ, Sobel AH et al (2014) Characteristics of tropical cyclones in high-resolution models in the present climate. J Adv Model Earth Syst 6:1154–1172. doi: 10.1002/2014MS000372 CrossRefGoogle Scholar
  74. Sheikh PA (2005) The impact of hurricane Katrina on biological resources. Congressional Research Service, Library of CongressGoogle Scholar
  75. Slingo J, Bates K, Nikiforakis N et al (2009) Developing the next-generation climate system models: challenges and achievements. Philos Trans R Soc London A: Math, Phys Eng Sci 367:815–831. doi: 10.1098/rsta.2008.0207 CrossRefGoogle Scholar
  76. Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazards 67:387–410. doi: 10.1007/s11069-013-0566-5 CrossRefGoogle Scholar
  77. Solomon S et al (eds) (2007) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the IPCC, vol. 4. Cambridge University Press, Cambridge, UKGoogle Scholar
  78. Stewart M, Rosowsky D, Huang Z (2003) Hurricane risks and economic viability of strengthened construction. Nat Hazards Rev 4:12–19. doi: 10.1061/(ASCE)1527-6988(2003)4:1(12) CrossRefGoogle Scholar
  79. Strachan J (2007) The use of high-resolution global climate models for climate risk assessment. Catastrophe Modelling Forum Paper. New YorkGoogle Scholar
  80. Strachan J, Vidale PL, Hodges K et al (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Climate 26(1):133–152. doi: 10.1175/JCLI-D-12-00012.1 CrossRefGoogle Scholar
  81. Strazzo S, Elsner JB, LaRow T et al (2013) Observed versus GCM-generated local tropical cyclone frequency: comparisons using a spatial lattice. J Climate 26:8257–8268. doi: 10.1175/JCLI-D-12-00808.1 CrossRefGoogle Scholar
  82. Tye MR, Stephenson DB, Holland GJ, Katz RW (2014) A Weibull approach for improving climate model projections of tropical cyclone wind-speed distributions. J Climate 27:6119–6133. doi: 10.1175/JCLI-D-14-00121.1 CrossRefGoogle Scholar
  83. Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone activity. J Climate 21:3580–3600. doi: 10.1175/2008JCLI2178.1 CrossRefGoogle Scholar
  84. Vickery PJ, Skerlj P, Twisdale L (2000a) Simulation of hurricane risk in the U.S. using empirical track model. J Struct Eng 10:1222–1237. doi: 10.1061/(ASCE)07339445(2000)126 CrossRefGoogle Scholar
  85. Vickery PJ, Skerlj P, Steckley A, Twisdale L (2000b) Hurricane wind field model for use in hurricane simulations. J Struct Eng 126(10):1203–1221CrossRefGoogle Scholar
  86. Vickery PJ, Masters FJ, Powell MD, Wadhera D (2009) Hurricane hazard modeling: the past, present, and future. J Wind Eng Ind Aerodyn. doi: 10.1016/j.jweia.2009.05.005 Google Scholar
  87. Villarini G, Vecchi GA (2012a) Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J Climate 26:3231–3240. doi: 10.1175/JCLI-D-12-00441.1 CrossRefGoogle Scholar
  88. Villarini G, Vecchi GA (2012b) Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat Clim Chang 2:604–607. doi: 10.1038/nclimate1530 CrossRefGoogle Scholar
  89. Villarini G, Vecchi GA, Smith JA (2012) U.S. landfalling and North Atlantic hurricanes: statistical modeling of their frequencies and ratios. Mon Weather Rev 140:44–65CrossRefGoogle Scholar
  90. Villarini G, Lavers DA, Scoccimarro E, Zhao M et al (2014) Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J Climate 27:4622–4641. doi: 10.1175/JCLI-D-13-00780 CrossRefGoogle Scholar
  91. Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L07709. doi: 10.1029/2007GL029683 CrossRefGoogle Scholar
  92. Vitolo R, Strachan J, Vidale PL, et al (2010) A global climate model based event set for tropical cyclone risk assessment in the West Pacific. In: Abstracts from EGU general assembly, Vienna, Austria, 2–7 May 2010Google Scholar
  93. Walsh KJE, McBride JL, Klotzbach PJ et al (2016) Tropical cyclones and climate change. WIREs Clim Chang 7:65–89. doi: 10.1002/wcc371 CrossRefGoogle Scholar
  94. Wang C, Lee S-K, Enfield DB (2008) Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi: 10.1029/2007GC001809 Google Scholar
  95. Wang S, Toumi R, Czaja A, Kan AV (2015) An analytic model of tropical cyclone wind profiles. Q J R Meteorol Soc 141:3018–3029. doi: 10.1002/qj.2586 CrossRefGoogle Scholar
  96. Weinkle J, Maue R, Pielke R (2012) Historical global tropical cyclone landfalls*. J Climate 25:4729–4735. doi: 10.1175/JCLI-D-11-00719.1 CrossRefGoogle Scholar
  97. Weller H, Ringler T, Piggott M, Wood N (2010) Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull Am Meteorol Soc 91:105–108. doi: 10.1175/2009BAMS2907.1 CrossRefGoogle Scholar
  98. Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65:180–185. doi: 10.1002/wea.543 CrossRefGoogle Scholar
  99. Willoughby HE, Darling RWR, Rahn ME (2006) Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles. Mon Weather Rev 134:1102–1120. doi: 10.1175/MWR3106.1 CrossRefGoogle Scholar
  100. World Bank (2014) Understanding risk: review of open source and open access software packages available to quantify risk from natural hazards. World Bank Group, Washington, DCGoogle Scholar
  101. Xuan Z, Chang N-B (2014) Modeling the climate-induced changes of lake ecosystem structure under the cascade impacts of hurricanes and droughts. Ecol Model 288:79–93. doi: 10.1016/j.ecolmodel.2014.05.014 CrossRefGoogle Scholar
  102. Zarzycki C, Jablonowski C (2015) Experimental tropical cyclone forecasts using a variable-resolution global model. Mon Weather Rev 143:4012–4037. doi: 10.1175/MWR-D-15-0159.1 CrossRefGoogle Scholar
  103. Zhai AR, Jiang JH (2014) Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ Res Lett 9:64019. doi: 10.1088/1748-9326/9/6/064019 CrossRefGoogle Scholar
  104. Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Climate 22:6653–6678. doi: 10.1175/2009JCLI3049.1 CrossRefGoogle Scholar
  105. Zhao M et al (2013) Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency. US CLIVAR Var 11:17–23Google Scholar
  106. Zhu P (2008) A multiple scale modeling system for coastal hurricane wind damage mitigation. Nat Hazards 47:577–591. doi: 10.1007/s11069-008-9240-8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations