Modern Tropical Cyclone Wind Observation and Analysis



Direct observation of the maximum wind in tropical cyclones is extremely rare because of the violence of the environment, the paucity of ocean-borne observing stations, and the remoteness and size of the storms. Besides raising confidence in historical tropical cyclone climate records – which are currently inadequate for climate studies – accurate measurements of the tropical cyclone wind structure and other characteristics are particularly important to more accurately forecast storms, thus mitigating economic and human loss. Large amounts of resources have been devoted to develop innovative methods to adequately observe these systems. This chapter will present an overview of the observing systems and instruments that are used to observe tropical cyclone winds in the early twenty-first century, including in situ and remote sensing approaches. Techniques used to determine the maximum wind speed in the frequent absence of more direct observations are also discussed.


Tropical cyclone Observation SFMR GPS dropwindsonde Doppler radar Scatterometer AMSU Dvorak technique H*Wind HIRad Aerosonde SATCON 



Dr. Daniel J. Cecil (NASA Marshall Space Flight Center) contributed Fig. 4.5 and provided helpful information about the HIRad program. Yankee Environmental Systems provided the dropsonde data from Fig. 4.5; they were processed by Dr. Michael Bell at the University of Hawaii. Dr. Mark Powell (RMS/H*Wind Scientific) provided valuable insights on measuring tropical cyclone winds from buoys. Derrick Herndon (Space Science and Engineering Center, University of Wisconsin) provided Fig. 4.6 and improved the discussion on SATCON.


  1. Aberson SD, Franklin JL (1999) Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV Jet aircraft. Bull Am Meteorol Soc 80:421–427. doi:10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2 CrossRefGoogle Scholar
  2. Barrick DE, Swift CT (1980) The Seasat microwave instruments in historical perspective. IEEE J Oceanic Eng 5:74–79. doi:10.1109/JOE.1980.1145457 CrossRefGoogle Scholar
  3. Brennan MJ, Hennon CC, Knabb RD (2009) The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Weather Forecast 24:621–645. doi:10.1175/2008WAF2222188.1 CrossRefGoogle Scholar
  4. Burpee RW, Marks DG, Merrill RT (1984) An assessment of omega dropwindsonde data in track forecasts of Hurricane Debby (1982). Bull Am Meteorol Soc 65:1050–1058. doi:10.1175/1520-0477(1984)065<1050:AAOODD>2.0.CO;2 CrossRefGoogle Scholar
  5. Cecil DJ, Biswas SK, Jones WL (2015) Hurricane imaging radiometer (HIRAD) [Internet]Google Scholar
  6. CIMSS (2015) CIMSS tropical cyclone intensity consensus for Patricia (20E). Accessed 24 Jun 2016
  7. Collins J, Flaherty P (2014) The NOAA hurricane hunters: a historical and mission perspective. Fla Geogr 45:14–27Google Scholar
  8. Demuth JL, DeMaria M, Knaff JA, Vonder Haar TH (2004) Evaluation of advanced microwave sounding unit tropical-cyclone intensity and size estimation algorithms. J Appl Meteorol 43:282–296. doi:10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2 CrossRefGoogle Scholar
  9. Dunion JP, Velden CS (2002) Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. Part I: Methodology and validation. Mon Weather Rev 130:1333–1346. doi:10.1175/1520-0493(2002)130<1333:AOSAGL>2.0.CO;2 CrossRefGoogle Scholar
  10. Dvorak VF (1972) A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NESS, Washington, DCGoogle Scholar
  11. Dvorak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon Weather Rev 103:420–430. doi:10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2 CrossRefGoogle Scholar
  12. Dvorak VF (1984) Tropical cyclone intensity analysis using satellite data. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Washington, DCGoogle Scholar
  13. Fernandez DE, Kerr EM, Castells A et al (2005) IWRAP: the imaging wind and rain airborne profiler for remote sensing of the ocean and the atmospheric boundary layer within tropical cyclones. IEEE Trans Geosci Remote Sens 43:1775–1787. doi:10.1109/TGRS.2005.851640 CrossRefGoogle Scholar
  14. Franklin JL, Black ML, Valde K (2003) GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast 18:32–44. doi:10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2 CrossRefGoogle Scholar
  15. Freilich MH, Dunbar RS (1999) The accuracy of the NSCAT 1 vector winds: comparisons with National Data Buoy Center buoys. J Geophys Res Oceans (1978–2012) 104:11231–11246. doi:10.1029/1998JC900091
  16. Gilhousen DB (1987) A field evaluation of NDBC moored buoy winds. J Atmos Ocean Technol 4:94–104. doi:10.1175/1520-0426(1987)004<0094:AFEONM>2.0.CO;2 CrossRefGoogle Scholar
  17. Goldberg MD (1999) Generation of retrieval products from AMSU-A: methodology and validation. In: Technical Proceedings of the 10th International ATOVS Study Conference. Boulder, pp 215–229Google Scholar
  18. Govind PK (1975) Omega windfinding systems. J Appl Meteorol 14:1503–1511. doi:10.1175/1520-0450(1975)014<1503:OWS>2.0.CO;2 CrossRefGoogle Scholar
  19. Guimond SR, Tian L, Heymsfield GM, Frasier SJ (2014) Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J Atmos Ocean Technol 31:1189–1215. doi:10.1175/JTECH-D-13-00140.1 CrossRefGoogle Scholar
  20. Harasti PR, McAdie CJ, Dodge PP et al (2004) Real-time implementation of Single-Doppler Radar analysis methods for tropical cyclones: algorithm improvements and use with WSR-88D display data. Weather Forecast 19:219–239. doi:10.1175/1520-0434(2004)019<0219:RIOSRA>2.0.CO;2 CrossRefGoogle Scholar
  21. Hock TF, Franklin JL (1999) The NCAR GPS dropwindsonde. Bull Am Meteorol Soc 80:407–420. doi:10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2 CrossRefGoogle Scholar
  22. Holland GJ, Webster PJ, Curry JA et al (2001) The Aerosonde robotic aircraft: a new paradigm for environmental observations. Bull Am Meteorol Soc 82:889–901. doi:10.1175/1520-0477(2001)082<0889:TARAAN>2.3.CO;2 CrossRefGoogle Scholar
  23. Howden S, Gilhousen D, Guinasso N et al (2008) Hurricane Katrina winds measured by a buoy-mounted sonic anemometer. J Atmos Ocean Technol 25:607–616. doi:10.1175/2007JTECHO518.1 CrossRefGoogle Scholar
  24. Jones WL, Swift CT, Black PG, Delnore VE (1981) Airborne microwave remote-sensing measurements of hurricane allen. Science 214:274–280. doi: 10.1126/science.214.4518.274 CrossRefGoogle Scholar
  25. Kidder SQ, Goldberg MD, Zehr RM et al (2000) Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull Am Meteorol Soc 81:1241–1259. doi:10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2 CrossRefGoogle Scholar
  26. Knaff JA, Brown DP, Courtney J et al (2010) An evaluation of Dvorak technique–based tropical cyclone intensity estimates. Weather Forecast 25:1362–1379. doi:10.1175/2010WAF2222375.1 CrossRefGoogle Scholar
  27. Kossin JP, Knapp KR, Vimont DJ et al (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett. doi: 10.1029/2006GL028836 Google Scholar
  28. Kossin JP, Olander TL, Knapp KR (2013) Trend analysis with a new global record of tropical cyclone intensity. J Clim 26:9960–9976. doi:10.1175/JCLI-D-13-00262.1 CrossRefGoogle Scholar
  29. Landsea CW, Franklin JL, McAdie CJ et al (2004) A reanalysis of hurricane Andrew’s intensity. Bull Am Meteorol Soc 85:1699–1712. doi:10.1175/BAMS-85-11-1699 CrossRefGoogle Scholar
  30. Laupattarakasem P, Jones WL, Hennon CC et al (2010) Improved hurricane ocean vector winds using SeaWinds active/passive retrievals. IEEE Trans Geosci Remote Sens 48:2909–2923. doi: 10.1109/TGRS.2010.2043110 CrossRefGoogle Scholar
  31. Li L, Heymsfield G, Carswell J, et al (2008) High-altitude imaging wind and rain airborne radar (HIWRAP). In: IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Boston, pp 354–357Google Scholar
  32. Nakazawa T, Hoshino S (2009) Intercomparison of Dvorak parameters in the tropical cyclone datasets over the Western North Pacific. SOLA 5:33–36. doi: 10.2151/sola.2009-009 CrossRefGoogle Scholar
  33. Niiler P, Lumpkin R, Centurioni L (2003) Operational deployments of drifting buoys into targeted tropical cyclones. Accessed 24 Jun 2016
  34. NOAA (2006) Final Report: first-ever successful UAS mission into a tropical storm (Ophelia - 2005). Accessed 24 Jun 2016
  35. Nolan DS, Zhang JA, Uhlhorn EW (2014) On the limits of estimating the maximum wind speeds in hurricanes. Mon Weather Rev 142:2814–2837. doi:10.1175/MWR-D-13-00337.1 CrossRefGoogle Scholar
  36. Olander TL, Velden CS (2007) The advanced Dvorak technique: continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Weather Forecast 22:287–298. doi:10.1175/WAF975.1 CrossRefGoogle Scholar
  37. Powell MD, Houston SH, Reinhold TA (1996) Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Weather Forecast 11:304–328. doi:10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2 CrossRefGoogle Scholar
  38. Powell MD, Houston SH, Amat LR, Morisseau-Leroy N (1998) The HRD real-time hurricane wind analysis system. J Wind Eng Ind Aerodyn 77 & 78:53–64. doi: 10.1016/S0167-6105(98)00131-7 CrossRefGoogle Scholar
  39. Rappaport EN, Franklin JL, Avila LA et al (2009) Advances and challenges at the National Hurricane Center. Weather Forecast 24:395–419. doi:10.1175/2008WAF2222128.1 CrossRefGoogle Scholar
  40. Reade D (2014) The resurgence of tropical cyclone reconnaissance aircraft in the far East and Western Pacific. Accessed 24 Jun 2016
  41. Rinehart RE, Garvey ET (1978) Three-dimensional storm motion detection by conventional weather radar. Nature 273:287–289. doi: 10.1038/273287a0 CrossRefGoogle Scholar
  42. RMS real-time hurricane impact data. Accessed 24 Jun 2016
  43. Schott T, Landsea C, Hafele G, et al (2012) The Saffir-Simpson hurricane wind scale. [Internet]. Available from: Accessed 2016
  44. Smalley JH (1979) The dropwindsonde system. Atmos Technol 10:24–28Google Scholar
  45. Tuttle J, Gall R (1999) A single-radar technique for estimating the winds in tropical cyclones. Bull Am Meteorol Soc 80:653–668. doi:10.1175/1520-0477(1999)080<0653:ASRTFE>2.0.CO;2 CrossRefGoogle Scholar
  46. Uhlhorn EW, Black PG (2003) Verification of remotely sensed Sea surface winds in hurricanes. J Atmos Ocean Technol 20:99–116. doi:10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2 CrossRefGoogle Scholar
  47. Uhlhorn EW, Black PG, Franklin JL et al (2007) Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon Weather Rev 135:3070–3085. doi:10.1175/MWR3454.1 CrossRefGoogle Scholar
  48. Ulaby FT, Moore RK, Fung AK (1981) Microwave remote sensing: active and passive, vol 1, Microwave remote sensing fundamentals and radiometry. Addison-Wesley Publishing Co., Kansas University, LawrenceGoogle Scholar
  49. Velden CS, Herndon D (2014) Update on the SATellite CONsensus (SATCON) algorithm for estimating TC intensity. In: Poster session I. San DiegoGoogle Scholar
  50. Velden CS, Olander TL, Wanzong S (1998) The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon Weather Rev 126:1202–1218. doi:10.1175/1520-0493(1998)126<1219:TIOMGW>2.0.CO;2 CrossRefGoogle Scholar
  51. Velden C, Harper B, Wells F et al (2006) The Dvorak tropical cyclone intensity estimation technique: a satellite-based method that has endured for over 30 years. Bull Am Meteorol Soc 87:1195–1210. doi:10.1175/BAMS-87-9-1195 CrossRefGoogle Scholar
  52. Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi: 10.1126/science.1116448 CrossRefGoogle Scholar
  53. Wu M-C, Yeung K-H, Chang W-L (2006) Trends in western North Pacific tropical cyclone intensity. Eos Trans Amer Geophys Union 87:537–538. doi: 10.1029/eost2006EO48 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesUniversity of North Carolina at AshevilleAshevilleUSA

Personalised recommendations