Skip to main content

Near-Time Sea Surface Temperature and Tropical Cyclone Intensity in the Eastern North Pacific Basin

  • Chapter
  • First Online:
Hurricanes and Climate Change

Abstract

Although a significant relationship between near-time sea surface temperature (SST) and tropical cyclone (TC) intensity has been found for many major TC basins, this topic has not been explored in the eastern North Pacific (ENP) basin. When the main development region of the (ENP) Ocean is subdivided into eastern (EDR) and western (WDR) development regions, SSTs show a weak, yet significant, positive relationship with intensities of the six-hourly TC observations and storms’ maximum strengths only in the WDR. This SST-storm intensity relationship is most apparent for the maximum lifetime TC intensity of WDR major hurricanes. The maximum strength of major hurricanes in the ENP basin is more clearly established in the WDR where SST is at least 25 °C, well below the minimum SST value that is observed in the North Atlantic basin.

When intensity observations are binned into SST intervals, the upper bound value of TC intensity is found to increase with SST. Compared to the previous TC climatological analysis (Whitney and Hobgood (1997) J Clim 10(11):2921–2930), the maximum relative wind speed has increased for SST bins of 27 °C (>26.5 °C and <27.5 °C) or higher. While a linear function was determined previously as the best empirical fit for the ENP maximum potential intensity (ENPMPI) for each SST bin (Whitney and Hobgood (1997) J Clim 10(11):2921–2930), other means of curve fitting such as the exponential decay (increase form) function also show skill at representing the SST-dependent ENPMPI in the WDR. When storm observations are regionally stratified, the rate of increasing maximum potential intensity with SST flattens out towards the highest SST category. Under the ambient condition in which the theoretical MPI is assumed along ENP storm tracks, the updated relationship of the outflow temperature with SST resembles an inverse (negative) sigmoid curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NOAA High-Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

References

  • Balaguru K, Leung LR, Yoon J-H (2013) Oceanic control of northeast Pacific hurricane activity at interannual timescales. Environ Res Lett 8:4009. doi:10.1088/1748-9326/8/4/044009

    Article  Google Scholar 

  • Bender MA, Ginis I (2000) Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946

    Article  Google Scholar 

  • Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65:233–240

    Article  Google Scholar 

  • Boucharel J, Jin F-F, Lin II, Huang H-C, England MH (2016) Different controls of tropical cyclone activity in the Eastern Pacific for two types of El Niño. Geophys Res Lett. doi:10.1002/2016GL067728

    Google Scholar 

  • Caron L-P, Boudreault M, Camargo SJ (2015) On the variability and predictability of eastern north Pacific tropical cyclone activity. J Climate 28:9678–9696

    Article  Google Scholar 

  • Chu P-S (2004) ENSO and tropical cyclone activity. In: Murnane RJ, Liu KB (eds) Hurricanes and typhoons: past, present, and potential. Columbia University Press, New York, pp 297–332

    Google Scholar 

  • Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796

    Article  Google Scholar 

  • Collins J (2010) Contrasting high North-East Pacific tropical cyclone activity with low North Atlantic activity. Southeast Geogr 50:83–98

    Article  Google Scholar 

  • Collins JM, Mason IM (2000) Local environmental conditions related to seasonal tropical cyclone activity in the Northeast Pacific basin. Geophys Res Lett 27:3881–3884

    Article  Google Scholar 

  • Collins JM, Roache DR (2011) The 2009 hurricane season in the eastern North Pacific basin: an analysis of environmental conditions. Mon Weather Rev 139(6):1673–1681

    Article  Google Scholar 

  • Dare RA, Mcbride JL (2011a) Sea surface temperature response to tropical cyclones. Mon Weather Rev 139(12):3798–3808

    Article  Google Scholar 

  • Dare RA, Mcbride JL (2011b) The threshold sea surface temperature condition for tropical cyclogenesis. J Climate 24(17):4570–4576

    Article  Google Scholar 

  • Davis MAS, Brown GM, Leftwich P (1984) A tropical cyclone data tape for the eastern and Central North pacific basins, 1949–1983: contents, limitations, and uses. NOAA Technical Memorandum NWS NHC 25, http://www.nhc.noaa.gov/pdf/NWS-NHC-1984-25.pdf

  • DeMaria M, Kaplan J (1994) Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J Climate 7:1325–1334

    Article  Google Scholar 

  • Diamond HJ, Lorrey AM, Renwick JA (2013) A southwest Pacific tropical cyclone climatology and linkages to the El Niño–Southern Oscillation. J Climate 26:3–25

    Article  Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326(6112):483–485

    Article  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  CAS  Google Scholar 

  • Emanuel K, Solomon S, Folini D, Davis S, Cagnazzo C (2013) Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J Climate 26:2288–2301

    Article  Google Scholar 

  • Evans JE (1993) Sensitivity of tropical cyclone intensity to sea surface temperature. J Climate 6:1133–1140

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  CAS  Google Scholar 

  • Gray WM (1968) A global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700

    Article  Google Scholar 

  • Gray WM (1984) Atlantic seasonal hurricane frequency: part I. El Nino and 30 mb quasi-biennial oscillation influences. Mon Weather Rev 112:1649–1668

    Article  Google Scholar 

  • Hart RE, Maue RN, Watson MC (2007) Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon Weather Rev 135(12):3990–4005

    Article  Google Scholar 

  • Henderson-Sellers A et al (1998) Tropical cyclones and global climate change: a post-IPCC assessment. Bull Am Meteorol Soc 79:19–38

    Article  Google Scholar 

  • Jien J, Gough WA, Butler K (2015) The influence of El Niño-Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J Climate 28(16):2459–2474

    Article  Google Scholar 

  • Jin F-F, Boucharel J, Lin II (2014) Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516:82–85

    Article  CAS  Google Scholar 

  • Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and eastern north Pacific basins. Weather Forecast 25(1):220–241

    Article  Google Scholar 

  • Kossin JP, Camargo SJ (2009) Hurricane track variability and secular potential intensity trends. Clim Change 9:329–337

    Article  Google Scholar 

  • Kotal SD, Kundu PK, Bhowmik SKR (2009) An analysis of sea surface temperature and maximum potential intensity of tropical cyclones over the Bay of Bengal between 1981 and 2000. Meteorol Appl 16(2):169–177

    Article  Google Scholar 

  • Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141(10):3576–3592

    Article  Google Scholar 

  • Landsea CW, Bell GD, Gray WM, Goldenberg SB (1998) The extremely active 1995 atlantic hurricane season: environmental conditions and verification of seasonal forecasts. Mon Weather Rev 126(5):1174–1193

    Article  Google Scholar 

  • Martinez-Sanchez JN, Cavazos T (2014) Eastern tropical Pacific hurricane variability and landfalls on Mexican coasts. Climate Res 58(3):221–234

    Article  Google Scholar 

  • Maue RN (2009) Northern hemisphere tropical cyclone activity. Geophys Res Lett 36(5):L05805. doi:10.1029/2008GL035946

    Article  Google Scholar 

  • Mei W, Pasquero C (2013) Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J Climate 26(11):3745–3765

    Article  Google Scholar 

  • Mei W, Pasquero C, Primeau F (2012) The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys Res Lett 39:L07801. doi:10.1029/2011GL050765

    Article  Google Scholar 

  • Merrill RT (1988) Environmental influences on hurricane intensification. J Atmos Sci 45:1678–1687

    Article  Google Scholar 

  • Mesinger F et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360

    Article  Google Scholar 

  • Michaels PJ, Knappenberger PC, Davis RE (2006) Sea-surface temperatures and tropical cyclones in the Atlantic basin. Geophys Res Lett 33(9):L09708. doi:10.1029/2006GL025757

    Article  Google Scholar 

  • Miller BI (1958) On the maximum intensity of hurricanes. J Meteor 15:184–195

    Article  Google Scholar 

  • Molinari J, Knight D, Dickenson M, Vollaro D, Skubis S (1997) Potential vorticity, easterly waves and eastern Pacific intensification. Mon Weather Rev 125:2699–2708

    Article  Google Scholar 

  • Palmén E (1948) On the formation and structure of tropical hurricanes. Geophysica 3:26–38

    Google Scholar 

  • Patricola C, Saravanan R, Chang P (2014) The impact of the El Niño–Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J Climate 27:5311–5328

    Article  Google Scholar 

  • Raga GB, Bracamontes-Ceballos B, Farfán LM, Romero-Centeno R (2013) Landfalling tropical cyclones on the Pacific coast of Mexico: 1850–2010. Atmosfera 26(2):209–220

    Article  Google Scholar 

  • Ralph TU, Gough WA (2009) The influence of sea-surface temperatures on eastern North Pacific tropical cyclone activity. Theor Appl Climatol 95:257–264

    Article  Google Scholar 

  • Ramsay HA (2013) The effects of imposed stratospheric cooling on the maximum intensity of tropical cyclones in axisymmetric radiative–convective equilibrium. J Climate 26:9977–9985

    Article  Google Scholar 

  • Saunders MA, Lea AS (2008) Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature 451(7178):557–560

    Article  CAS  Google Scholar 

  • Thorncroft C, Hodges K (2001) African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J Climate 14:1166–1179

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450(7172):1066–1070

    Article  CAS  Google Scholar 

  • Vecchi GA, Fueglistaler S, Held IM, Knutson TR, Zhao M (2013) Impacts of atmospheric temperature changes on tropical cyclone activity. J Climate 26:3877–3891

    Article  Google Scholar 

  • Wang S, Camargo SJ, Sobel AH, Polvani LM (2014) Impact of the tropopause temperature on the intensity of tropical cyclones – an idealized study using a mesoscale model. J Atmos Sci 71:4333–4348

    Article  CAS  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  Google Scholar 

  • Whitney LD, Hobgood JS (1997) The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern north Pacific Ocean. J Climate 10(11):2921–2930

    Article  Google Scholar 

  • Wing AA, Sobel AH, Camargo SJ (2007) The relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophys Res Lett 34:L08810. doi:10.1029/2006GL028581

    Google Scholar 

  • Wing AA, Emanuel K, Solomon S (2015) On the factors affecting trends and variability in tropical cyclone potential intensity. Geophys Res Lett 42:8669–8677. doi:10.1002/2015GL066145

    Article  Google Scholar 

  • Wood KM, Ritchie EA (2013) An updated climatology of tropical cyclone impacts on the southwestern United States. Mon Weather Rev 141:4322–4336

    Article  Google Scholar 

  • Wu L, Tao L, Ding Q (2010) Influence of sea surface warming on environmental factors affecting long-term changes of Atlantic tropical cyclone formation. J Climate 23(22):5978–5989

    Article  Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Climate 23(4):966–986

    Article  Google Scholar 

  • Zeng Z, Wang Y, Wu C-C (2007) Environmental dynamical control of tropical cyclone intensity – an observational study. Mon Weather Rev 135(1):38–59

    Article  Google Scholar 

  • Zhang G, Wang Z (2015) Interannual variability of tropical cyclone activity and regional Hadley circulation over the northeastern Pacific. Geophys Res Lett 42:2473–2481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Y. Jien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jien, J.Y., Gough, W.A., Butler, K., Cheng, V., Arhonditsis, G. (2017). Near-Time Sea Surface Temperature and Tropical Cyclone Intensity in the Eastern North Pacific Basin. In: Collins, J., Walsh, K. (eds) Hurricanes and Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-47594-3_3

Download citation

Publish with us

Policies and ethics