Outlier Analysis pp 149-184

High-Dimensional Outlier Detection: The Subspace Method

  • Charu C. Aggarwal
Chapter

Abstract

Many real data sets are very high dimensional. In some scenarios, real data sets may contain hundreds or thousands of dimensions. With increasing dimensionality, many of the conventional outlier detection methods do not work very effectively. This is an artifact of the well-known curse of dimensionality. In high-dimensional space, the data becomes sparse, and the true outliers become masked by the noise effects of multiple irrelevant dimensions, when analyzed in full dimensionality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T.J. Watson Research CenterNew YorkUSA

Personalised recommendations