Linear Models for Outlier Detection

  • Charu C. Aggarwal


The attributes in real data are usually highly correlated. Such dependencies provide the ability to predict attributes from one another. The notions of prediction and anomaly detection are intimately related. Outliers are, after all, values that deviate from expected (or predicted) values on the basis of a particular model. Linear models focus on the use of interattribute dependencies to achieve this goal. In the classical statistics literature, this process is referred to as regression modeling.


Principal Component Analysis Hide Layer Outlier Detection Kernel Principal Component Analysis Latent Semantic Indexing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T.J. Watson Research CenterNew YorkUSA

Personalised recommendations