Skip to main content

Shock Wave Lithotripsy

  • Chapter
  • First Online:
Medical and Biomedical Applications of Shock Waves

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Extracorporeal shock wave lithotripsy (SWL) remains the only noninvasive modality in lithotripsy and still contributes to more than half of all urinary stone treatments worldwide; however, success rates vary significantly because different equipment and protocols are used. An overview of shock wave generation methods for SWL and comments on some representative modern lithotripters are given in the first part of the chapter. Descriptions of few old lithotripter models were included due to their historical importance. Furthermore, some interesting shock wave sources that remained as experimental devices are mentioned. Recommendations to perform efficient SWL treatments are given in the second part of the chapter. Contraindications, treatment of pediatric and obese patients, the influence of the focal size, shock wave rate, shock wave coupling, stone size, composition, and location on treatment outcomes, as well as the convenience of voltage-stepping and the use of prophylactic shock waves are discussed. SWL for gallbladder, pancreatic common bile duct, and salivary gland stones was also included. Although SWL is a routine in urology and millions of treatments have been performed successfully, improvements to increase stone fragmentation efficiency and reduce tissue damage are still being sought. The final section of this chapter deals with a few developments that might be incorporated into commercial devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abara E, Merguerian PA, McLorie GA, Psihramis KE, Jewett M, Churchill BM (1990) Lithostar extracorporeal shock wave lithotripsy in children. J Urol 144:489–492

    Google Scholar 

  • Abdelaziz H, Elabiad Y, Aderrouj I, Janane A, Ghadouane M, Ameur A, Abbar M (2014) The usefulness of stone density and patient stoutness in predicting extracorporeal shock wave efficiency: results in a North African ethnic group. Can Urol Assoc J 8:E567–E569

    Article  Google Scholar 

  • Abdel-Khalek M, Sheir KZ, Mokhtar AA, Eraky I, Kenawy M, Bazeed M (2004) Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones. A multivariate analysis model. Scand J Urol Nephrol 38:161–167

    Article  Google Scholar 

  • Abid AF (2014) Success factors of extracorporeal shock wave lithotripsy (ESWL) for renal and ureteric calculi in adult. Open J Urol 4:26–32

    Article  Google Scholar 

  • Abid N, Ravier E, Codas R, Crouzet S, Martin X (2013) Nouveau repérage échographique en lithotritie extracorporelle: diminution des temps de scopie et de l’irradiation. Prog Urol 23:856–860 (in French)

    Article  Google Scholar 

  • Abid N, Ravier E, Promeyrat X, Codas R, Fehri HF, Crouzet S, Martin X (2015) Decreased radiation exposure and increased efficacy in extracorporeal lithotripsy using a new ultrasound stone locking system. J Endourol 29:1263–1269

    Article  Google Scholar 

  • Aboumarzouk OM, Kata SG, Keeley FX, McClinton S, Nabi G (2012) Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst Rev 5, CD006029

    Google Scholar 

  • Acalovschi M (2001) Cholesterol gallstones: from epidemiology to prevention. Postgrad Med J 77:221–229

    Article  Google Scholar 

  • Ackermann DK, Fuhrimann R, Pfluger D, Studer UE, Zingg EJ (1994) Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi: a multivariate analysis. Eur Urol 25:105–109

    Google Scholar 

  • Aeberli D, Müller S, Schmutz R, Schmid HP (2001) Predictive value of radiological criteria for disintegration rates of extracorporeal shock wave lithotripsy. Urol Int 66:127–130

    Article  Google Scholar 

  • Aidan P, De Kerviler E, LeDuc A, Monteil JP (1996) Treatment of salivary stones by extracorporeal lithotripsy. Am J Otolaryngol 17:246–250

    Article  Google Scholar 

  • Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13:2805–2819

    Article  ADS  MATH  Google Scholar 

  • Akin Y, Yucel S (2014) Long-term effects of pediatric extracorporeal shockwave lithotripsy on renal function. J Res Rep Urol 6:21–25

    Google Scholar 

  • Aksoy Y, Özbey I, Atmaca AF, Polat Ö (2004) Extracorporeal shock wave lithotripsy in children: experience using a MPL-9000 lithotriptor. World J Urol 22:115–119

    Article  Google Scholar 

  • Al-Ansari A, As-Sadiq K, Al-Said S, Younis N, Jaleel OA, Shokeir AA (2006) Prognostic factors of success of extracorporeal shock wave lithotripsy (ESWL) in the treatment of renal stones. Int Urol Nephrol 38:63–67

    Article  Google Scholar 

  • Alapont JM, Queipo JA, Burgués JP, Broseta E, Serrano A, Boronat F, Jiménez JF (2002) Tratamiento con litotricia extracorpórea por ondas de choque en niños: nuestra experiencia. Actas Urol Esp 26:15–19 (in Spanish)

    Article  Google Scholar 

  • Al-Awadi KA, Abdul Halim H, Kehinde EO, Al-Tawheed A (1999) Steinstrasse: a comparison of incidence with and without J stenting and the effect of J stenting on subsequent management. Br J Urol Int 84:618–622

    Article  Google Scholar 

  • Alenezi H, Olvera-Posada D, Cadieux PA, Denstedt JD, Razvi H (2016) The effect of renal cysts on the fragmentation of renal stones during shockwave lithotripsy: a comparative in vitro study. J Endourol 30:S12–S17

    Article  Google Scholar 

  • Alhashemi JA, Kaki AM (2006) Anesthesiologist-controlled versus patient-controlled propofol sedation for shockwave lithotripsy. Can J Anesth 53:449–455

    Article  Google Scholar 

  • Alsaikhan B, Andonian S (2011) Shock wave lithotripsy in patients requiring anticoagulation or antiplatelet agents. Can Urol Assoc J 5:53–57

    Article  Google Scholar 

  • Anderson KR, Kerbl K, Fadden PT, Wick MR, McDougall EM, Clayman RV (1995) Effect of piezoelectric energy on porcine kidneys using the EDAP LT.02. J Urol 153:1295–1298

    Article  Google Scholar 

  • Andreev VG, Veroman VY, Denisov GA, Rudenko OV, Saposhnikov OA (1992) Nonlinear acoustical aspects of extracorporeal lithotripsy. Sov Phys Acoust 38:325–327

    Google Scholar 

  • Andretta M, Tregnaghi A, Prosenikliev V, Staffieri A (2005) Current opinions in sialolithiasis diagnosis and treatment. Acta Otorhinolaryngol Ital 25:145–149

    Google Scholar 

  • Argyropoulos AN, Tolley DA (2007) Optimizing shock wave lithotripsy in the 21st century. Eur Urol 52:344–354

    Article  Google Scholar 

  • Arora M, Junge L, Ohl CD (2005) Cavitation cluster dynamics in shock-wave lithotripsy. Part 1: Free field. Ultrasound Med Biol 31:827–839

    Article  Google Scholar 

  • Asgari MA, Safarinejad MR, Hosseini SY, Dadkhah F (1999) Extracorporeal shock wave lithotripsy of renal calculi during early pregnancy. Br J Urol Int 84:615–617

    Article  Google Scholar 

  • Ather MH, Noor MA (2003) Does size and site matter for renal stones up to 30-mm in size in children treated by extracorporeal lithotripsy? Urology 61:212–215

    Article  Google Scholar 

  • Ather M, Shrestha B, Mehmood A (2009) Does ureteral stenting prior to shock wave lithotripsy influence the need for intervention in Steinstrasse and related complications? Urol Int 83:222–225

    Article  Google Scholar 

  • Bach C, Buchholz N (2011) Shock wave lithotripsy for renal and ureteric stones. Eur Urol Suppl 10:423–432

    Article  Google Scholar 

  • Bach C, Zaman F, Kachrilas S, Kumar P, Buchholz N, Masood J (2011) Drugs for pain management in shock wave lithotripsy. Pain Res Treat 2011:259426. doi:10.1155/2011/259426

    Google Scholar 

  • Bach C, Karaolides T, Buchholz N (2012) Extracorporeal shock wave lithotripsy: what is new? Arab J Urol 10:289–295

    Article  Google Scholar 

  • Bader MJ, Eisner B, Porpiglia F, Preminger GM, Tiselius HG (2012) Contemporary management of ureteral stones. Eur Urol 61:764–772

    Article  Google Scholar 

  • Baert L, Willemen P (1990) Inmediate in situ ESWL as monotherapy in acute obstructive urolithiasis: useful or not? J Lithotr Stone Dis 2:46–48

    Google Scholar 

  • Bailey MR (1997) Control of acoustic cavitation with application to lithotripsy [dissertation]. University of Texas at Austin, Texas, 221 p

    Google Scholar 

  • Bailey MR (The University of Texas at Austin, Austin, Texas and Defense Technical Information Center) (1997) Control of acoustic cavitation with application to lithotripsy. Final report. Applied Research Laboratories Report No: ARL-TR-97-1

    Google Scholar 

  • Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1998) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I Acoustic fields. J Acoust Soc Am 104:2517–2524

    Article  ADS  Google Scholar 

  • Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1999) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II Cavitation fields. J Acoust Soc Am 106:1149–1160

    Article  ADS  Google Scholar 

  • Bailey MR, Pishchalnikov YA, Sapozhnikov OA, Cleveland RO, McAteer JA, Miller NA, Pishchalnikova IV, Connors BA, Crum LA, Evan AP (2005) Cavitation detection during shock wave lithotripsy. Ultrasound Med Biol 31:1245–1256

    Article  Google Scholar 

  • Bailey MR, McAteer JA, Pishchalnikov YA, Hamilton MF, Colonius T (2006) Progress in lithotripsy research. Acoust Today 2:18–29

    Article  Google Scholar 

  • Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY (2009) Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. Br J Urol Int 103:524–528

    Article  Google Scholar 

  • Barkun ANG, Poncbon T (1990) Extracorporeal biliary lithotripsy: review of experimental studies and a clinical update. Ann Intern Med 112:126–137

    Article  Google Scholar 

  • Baron RL (1991) Role of CT in characterizing gallstones: an unsettled issue. Radiology 178:635–636

    Article  Google Scholar 

  • Baron RL, Rohrmann CA Jr, Lee SP, Shuman WP, Teefey SA (1988) CT evaluation of gallstones in vitro: correlation with chemical analysis. Am J Roentgenol 151:1123–1128

    Article  Google Scholar 

  • Bayar N, Kaymaz FF, Apan A, Yilmaz E, Cakar AN (2002) Effects of electrohydraulic extracorporeal shock wave lithotripsy on submandibular gland in the rat: electron microscopic evaluation. Int J Pediatr Otorhinolaryngol 63:223–233

    Article  Google Scholar 

  • Becker CD, Nagy AG, Fache JS, Gibney RG, Burhenne HJ (1987) Obstructive jaundice and cholangitis due to choledocholithiasis: treatment by extracorporeal shock-wave lithotripsy. Can J Surg 30:418–419

    Google Scholar 

  • Becker CD, Gilks CB, Burhenne HJ (1989) Biological effects of biliary shock wave lithotripsy in swine. Investig Radiol 24:366–370

    Article  Google Scholar 

  • Bell CE, Landt JA (1967) Laser-induced high-pressure shock waves in water. Appl Phys Lett 10:46–48

    Article  ADS  Google Scholar 

  • Bergsdorf T, Chaussy C (2010) New trends in shock wave application regarding technology and treatment strategy. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 1–19

    Google Scholar 

  • Bergsdorf T, Thüroff S, Chaussy C (2005b) Siemens: Pulso—first clinical results with a new electromagnetic shockwave source. J Endourol 19(Suppl 1):A33

    Google Scholar 

  • Bergsdorf T, Chaussy C, Thüroff S (2008) Energy coupling in extracorporeal shock wave lithotripsy––the impact of coupling quality on disintegration efficacy. J Endourol 22:A161

    Google Scholar 

  • Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E (1997) Shock waves from a water-confined laser-generated plasma. J Appl Phys 82:2826–2832

    Article  ADS  Google Scholar 

  • Bhatta KM, Prien EL Jr, Dretler SP (1989) Cystine calculi-rough and smooth: a new clinical distinction. J Urol 142:937–940

    Google Scholar 

  • Bhojani N, Mandeville JA, Hameed TA, Soergel TM, McAteer JA, Williams JC Jr, Krambeck AE, Lingeman JE (2015) Lithotripter outcomes in a community practice setting: comparison of an electromagnetic and an electrohydraulic lithotripter. J Urol 193:875–879

    Article  Google Scholar 

  • Bierkens AF, Hendrickx AJ, de Kort VJ, de Reyke T, Bruynen CA, Bouve ER, Beek TV, Vos P, Berkel HV (1992) Efficacy of second generation lithotriptors: a multicenter comparative study of 2,206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X-1 and Breakstone lithotriptors. J Urol 148:1052–1056

    Google Scholar 

  • Bland KI, Jones RS, Maher JW, Cotton PB, Pennell TC, Amerson JR, Munson JL, Berci G, Fuchs GJ, Way LW, Graham JB, Lindenau BU, Moody FG (1989) Extracorporeal shock-wave lithotripsy of bile duct calculi. An interim report of the Dornier U.S. bile duct lithotripsy prospective study. Ann Surg 209:743–753

    Article  Google Scholar 

  • Bohris C (2010) Quality of coupling in ESWL significantly affects the disintegration capacity—how to achieve good coupling with ultrasound gel. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II: standards and recent developments. Thieme, Stuttgart, pp 61–64

    Google Scholar 

  • Bohris C, Bayer T, Lechner C (2003) Hit/miss monitoring of ESWL by spectral Doppler ultrasound. Ultrasound Med Biol 29:705–712

    Article  Google Scholar 

  • Bohris C, Roosen A, Dickmann M, Hocaoglu Y, Sandner S, Bader M, Sief CG, Walther S (2012) Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol 187:157–163

    Article  Google Scholar 

  • Bölles R (2014) Klinische Ergebnisse der piezoelektrischen extrakorporalen Stosswellenlithotripsie mit variabler Fokuszone bei der Behandlung von Nieren- und Harnleitersteinen [dissertation]. Universität des Saarlandes, Saarbrücken, 146 p. (in German). http://scidok.sulb.uni-saarland.de/volltexte/2015/6010/pdf/PDF_Promotion01.2014.pdf

    Google Scholar 

  • Bon D, Dore B, Irani J, Marroncle M, Aubert J (1996) Radiographic prognostic criteria for extracorporeal shock-wave lithotripsy: a study of 485 patients. Urology 48:556–561

    Article  Google Scholar 

  • Bourlion M, Dancer P, Lacoste F, Mestas JL, Cathignol D (1994) Design and characterization of a shock wave generator using canalized electrical discharge: application to lithotripsy. Rev Sci Instrum 65:2356–2363

    Article  ADS  Google Scholar 

  • Brakel K, Laméris JS, Nijs HG, Terpstra OT, Steen G, Blijenberg BC (1990) Predicting gallstone composition with CT: in vivo and in vitro analysis. Radiology 174:337–341

    Article  Google Scholar 

  • Brand B, Kahl M, Sidhu S, Nam VC, Sriram PV, Jaeckle S, Thonke F, Soehendra N (2000) Prospective evaluation of morphology, function, and quality of life after extracorporeal shockwave lithotripsy and endoscopic treatment of chronic calcific pancreatitis. Am J Gastroenterol 95:3428–3438

    Article  Google Scholar 

  • Brendel W, Enders G (1983) Shock waves for gallstones: animal studies. Lancet 321:1054

    Article  Google Scholar 

  • Brink JA, Ferrucci IT (1991) Use of CT for predicting gallstone composition: a dissenting view. Radiology 178:633–634

    Article  Google Scholar 

  • Brouns JJ, Hendrikx AJ, Bierkens AF (1989) Removal of salivary stones with the aid of a lithotriptor. J Craniomaxillofac Surg 17:329–330

    Article  Google Scholar 

  • Brown BP, Loening SA, Johlin FC, Dayton MT, Maher JW (1988) Fragmentation of biliary tract stones by lithotripsy using local anesthesia. Arch Surg 123:91–93

    Article  Google Scholar 

  • Brown RD, De S, Sarkissian C, Monga M (2014) Best practices in shock wave lithotripsy: a comparison of regional practice patterns. Urology 83:1060–1064

    Article  Google Scholar 

  • Broyer P, Cathignol D, Theillère Y, Mestas JL (1996) High-efficiency shock-wave generator for extracorporeal lithotripsy. Med Biol Eng Comput 34:321–328

    Article  Google Scholar 

  • Brujan EA (2008) Shock wave emission from laser-induced cavitation bubbles in polymer solutions. Ultrasonics 48:423–426

    Article  Google Scholar 

  • Brujan EA, Nahen K, Schmidt P, Vogel A (2001a) Dynamics of laser-induced cavitation bubbles near an elastic boundary. J Fluid Mech 433:251–281

    Article  ADS  MATH  Google Scholar 

  • Brujan EA, Nahen K, Schmidt P, Vogel A (2001b) Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J Fluid Mech 433:283–314

    Article  ADS  MATH  Google Scholar 

  • Buchholz N, Elhowairis MEA, Bach C, Moraitis K, Masood J (2011) From ‘stone cutting’ to high-technology methods. The changing face of stone surgery. Arab J Urol 9:25–27

    Article  Google Scholar 

  • Burhenne HJ, Fache JS, Gibney RG, Rowley VA, Becker CD (1988) Biliary lithotripsy by extracorporeal shock waves: integral part of nonsurgical intervention. Am J Roentgenol 150:1279–1283

    Article  Google Scholar 

  • Burnett D, Ertan A, Jones R, O’Leary JP, Mackie R Jr, Robinson JE Jr, Salen G, Stahlgren L, Van Thiel DH, Vassy L, Greenberger N, Hofmann AF (1989) Use of external shock-wave lithotripsy and adjuvant ursodiol for treatment of radiolucent gallstones: a national multicenter study. Dig Dis Sci 34:1011–1015

    Article  Google Scholar 

  • Butt A, Khurram M, Ahmed A, Hasan Z, Rehman A, Farooqi MA (2005) Extracorporeal shock wave lithotripsy. J Coll Physicians Surg Pak 15:638–641

    Google Scholar 

  • Cakiroglu B, Eyyupoglu SE, Tas T, Balci MBC, Hazar I, Sinanoglu O (2014) Are Hounsfield densities of ureteral stone a predictive factor for effectiveness of extracorporeal shock wave lithotripsy? Int J Clin Exp Med 7:1276–1283

    Google Scholar 

  • Canseco G, de Icaza-Herrera M, Fernández F, Loske AM (2011) Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Ultrasonics 51:803–810

    Article  Google Scholar 

  • Capaccio P, Ottaviani F, Manzo R, Schindler A, Cesana B (2004) Extracorporeal lithotripsy for salivary calculi: a long-term clinical experience. Laryngoscope 114:1069–1073

    Article  Google Scholar 

  • Cass AS (1992) In situ extracorporeal shock wave lithotripsy for obstructing ureteral stones with acute renal colic. J Urol 148:1786–1787

    Google Scholar 

  • Cass AS (1994) Non-stent or non-catheter extracorporeal shock-wave lithotripsy for ureteral stones. Urology 43:178–181

    Article  Google Scholar 

  • Cass AS (1995) Comparison of first generation (Dornier HM3) and second generation (Medstone STS) lithotriptors: treatment results with 13,864 renal and ureteral calculi. J Urol 153:588–592

    Article  Google Scholar 

  • Cathignol D (1998) Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE Trans Ultrason Ferroelectr Freq Control 45:788–799

    Article  Google Scholar 

  • Cathignol D, Mestas JL, Gomez F, Lenz P (1991) Influence of water conductivity on the efficiency and reproducibility of electrohydraulic shock wave generation. Ultrasound Med Biol 17:819–828

    Article  Google Scholar 

  • Cathignol D, Birer A, Nachef S, Chapelon JY (1995) Electronic beam steering of shock waves. Ultrasound Med Biol 21:365–377

    Article  Google Scholar 

  • Cawson RA, Odell EW (1998) Essentials of oral pathology and oral medicine, 6th edn. Churchill Livingstone, Edinburgh, pp 239–240

    Google Scholar 

  • Chacko J, Moore M, Sankey N, Chandhoke PS (2006) Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol 175:1370–1374

    Article  Google Scholar 

  • Chan SL, Stothers L, Rowley A, Perler Z, Taylor W, Sullivan LD (1995) A prospective trial comparing the efficacy and complications of the modifed Dornier HM3 and MFL 5000 lithotripters for solitary renal calculi. J Urol 153:1794–1797

    Article  Google Scholar 

  • Chang B, Pamies RJ (1994) Biliary extracorporeal shock wave lithotripsy: an update. Hosp Pract 29:93–98

    Article  Google Scholar 

  • Chang H, Chen Y, Kao C (2000) Acupuncture anesthetic application for extracorporeal shock wave lithotripsy on elders. J Clin Acupunct Moxibustion 16:6–8

    Google Scholar 

  • Chang CC, Liang SM, Pu YR, Chen CH, Chen I, Chen TS, Kuo CL, Yu FM, Chu ZF (2001) In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: part I. J Urol 166:28–32

    Article  Google Scholar 

  • Chang CC, Manousakas I, Pu YR, Liang SM, Chen CH, Chen TS, Yu FM, Yang WH, Tong YC, Kuo CL (2002) In vitro study of ultrasound based real-time tracking for renal stones in shock wave lithotripsy: part II—a simulated animal experiment. J Urol 167:2594–2597

    Article  Google Scholar 

  • Chang CC, Pu YR, Manousakas I, Liang SM, Yu FM, Tong YC, Lin SH (2013) In vitro study of the revised ultrasound based real-time tracking of renal stones for shock wave lithotripsy: part 1. J Urol 189:2357–2363

    Article  Google Scholar 

  • Chapman WC, Stephens WH, Williams LF (1989) Principles of biliary extracorporeal lithotripsy: technical considerations and clinical implications. Am J Surg 158:179–183

    Article  Google Scholar 

  • Chaussy CG, Tiselius HG (2012) What you should know about extracorporeal shock wave lithotripsy and how to improve your performance. In: Talati JJ, Tiselius HG, Albala D, Ye Z (eds) Urolithiasis. Springer, London, pp 383–393

    Chapter  Google Scholar 

  • Chaussy CG, Tiselius HG (2015) Engineering better lithotripters. Curr Urol Rep 16:52. doi:10.1007/s11934-015-0524-8

    Article  Google Scholar 

  • Chaussy C, Eisenberger F, Wanner K (1979a) Die implantation humaner Nierensteine ein einfanches experimentelles Steinmodel. Urologe A 16:35–38 (in German)

    Google Scholar 

  • Chaussy C, Tailly G, Forssmann B, Bohris C, Lutz A, Tailly-Cusse M, Tailly T (2014) Extracorporeal shock wave lithotripsy in a nutshell, 2nd edn. Dornier MedTech Europe GmbH, Munich

    Google Scholar 

  • Chen CJ, Hsu HC, Chung WS, Yu HJ (2009) Clinical experience with ultrasound-based real-time tracking lithotripsy in the single renal stone treatment. J Endourol 23:1811–1815

    Article  Google Scholar 

  • Chen WT, Chang FC, Chen YH, Lin JG (2014) An evaluation of electroacupuncture at the Weizhong Acupoint (BL-40) as a means of relieving pain induced by extracorporeal shock wave lithotripsy. Evid Based Complement Alternat Med 2014:592319. doi:10.1155/2014/592319

    Google Scholar 

  • Chew BH, Zavaglia B, Sutton C, Masson RK, Chan SH, Hamidizadeh R, Lee JK, Arsovska O, Rowley VA, Zwirewich C, Afshar K, Paterson RF (2012) Twenty-year prevalence of diabetes mellitus and hypertension in patients receiving shock-wave lithotripsy for urolithiasis. Br J Urol Int 109:444–449

    Article  Google Scholar 

  • Chi-fai NG (2009) Extracorporeal shock wave lithotripsy. Hong Kong Med Diary Med Bull 14:9–11

    Google Scholar 

  • Chin CM, Tay KP, Ng FC, Lim PH, Chng HC (1997) Use of patient-controlled analgesia in extracorporeal shockwave lithotripsy. Br J Urol 79:848–851

    Article  Google Scholar 

  • Chiong E, Tay SPH, Li MK, Shen L, Kamaraj R, Esuvaranathan K (2005) Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology 65:1070–1074

    Article  Google Scholar 

  • Chitnis PV (2002) Characterization and comparative analysis of extracorporeal shock wave devices. Master’s Thesis, College of Engineering, Boston University, Boston, p 108

    Google Scholar 

  • Chitnis PV, Cleveland RO (2006) Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave. J Acoust Soc Am 119:1929–1932

    Article  ADS  Google Scholar 

  • Chitnis PV, Barbone PE, Cleveland RO (2008) Customization of the acoustic field produced by a piezoelectric array through interelement delays. J Acoust Soc Am 123:4174–4185

    Article  ADS  Google Scholar 

  • Choi KS, Kim MH (2006) Extracorporeal shock wave lithotripsy for the treatment of pancreatic duct stones. J Hepato-Biliary-Pancreat Surg 13:86–93

    Article  Google Scholar 

  • Choi KS, Kim MH, Lee YS, Kim JC, Choi EK, Han J, Kim MK, Yoon SM, Seo DW, Lee SS, Lee SK (2005) Disintegration of pancreatic duct stones with extracorporeal shockwave lithotripsy. Korean J Gastroenterol 46:396–403

    Google Scholar 

  • Choi MJ, Cho SC, Paeng DG, Lee KI, Coleman A (2011) Thickness effects of the metallic and insulating membranes of a cylindrical electromagnetic shock wave transducer. J Korean Phys Soc 59:3583–3587

    Article  Google Scholar 

  • Choong S, Whitfield H, Duffy P, Kellett M, Cuckow P, Van’t Hoff W, Corry D (2000) The management of pediatric urolithiasis. Br J Urol Int 86:857–860

    Article  Google Scholar 

  • Chuong CJ, Zhong P, Preminger GM (1992) A comparison of stone damage caused by different modes of shock wave generation. J Urol 148:200–205

    Google Scholar 

  • Chuong CJ, Zhong P, Preminger GM (1993) Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy. J Endourol 7:437–444

    Article  Google Scholar 

  • Church CC (1989) A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am 86:215–227

    Article  ADS  Google Scholar 

  • Classen M, Cremer M, Faustini S, Meiser G, zum Büschenfelde M, Neuhaus H, Ott R, Pizzi P, Salvini A, Staritz M (1990) Electromagnetic shock-wave lithotripsy of gallbladder calculi: multicentered preliminary report on experience with 276 patients. Hepatogastroenterology 37:425–427

    Google Scholar 

  • Cleveland RO, McAteer JA (2007) The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 317–332

    Google Scholar 

  • Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676

    Article  ADS  Google Scholar 

  • Cleveland R, Bailey M, Fineberg N, Hartenbaum B, Lokhandwalla M, McAteer JA, Sturtevant B (2000a) Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum 71:2514–2525

    Article  ADS  Google Scholar 

  • Cleveland RO, McAteer JA, Müller R (2001) Time-lapsed nondestructive assessment of shock wave damage to kidney stones in vitro using micro-computed tomography. J Acoust Soc Am 110:1733–1736

    Article  ADS  Google Scholar 

  • Cleveland RO, Anglade R, Babayan RK (2004) Effect of stone motion on in vitro comminution efficiency of a Storz Modulith SLX. J Endourol 18:629–633

    Article  Google Scholar 

  • Coats E (1956) The application of ultrasonic energy to urinary and biliary calculi. J Urol 75:865–874

    Google Scholar 

  • Cohen TD, Ehreth J, King LR, Preminger GM (1996) Pediatric urolithiasis: medical and surgical management. Urology 47:292–303

    Article  Google Scholar 

  • Coleman AJ, Saunders JE (1989) A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med Biol 15:213–227

    Article  Google Scholar 

  • Coleman AJ, Saunders JE, Preston RC, Bacon DR (1987b) Pressure waveforms generated by a Dornier extra-corporeal shock wave lithotripter. Ultrasound Med Biol 13:651–657

    Article  Google Scholar 

  • Coleman AJ, Saunders JE, Choi MJ (1989) An experimental shock wave generator for lithotripsy studies. Phys Med Biol 34:1733–1742

    Article  Google Scholar 

  • Coleman AJ, Whitlock M, Leighton T, Saunders JE (1993) The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter. Phys Med Biol 38:1545–1560

    Article  Google Scholar 

  • Conigliaro R, Camellini L, Zuliani CG, Sassatelli R, Mortilla MG, Bertoni G, Formisano D, Bedogni G (2006) Clearance of irretrievable bile duct and pancreatic duct stones by extracorporeal shockwave lithotripsy, using a transportable device: effectiveness and medium-term results. J Clin Gastroenterol 40:213–219

    Article  Google Scholar 

  • Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S (2009a) Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. Br J Urol Int 103:104–107

    Article  Google Scholar 

  • Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S, McAteer JA, Lingeman JE (2009b) Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. Br J Urol Int 104:1004–1008

    Article  Google Scholar 

  • Connors BA, McAteer JA, Evan AP, Blomgren PM, Handa RK, Johnson CD, Gao S, Pishchalnikov YA, Lingeman JE (2012) Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotripter. Br J Urol Int 110:1376–1385

    Article  Google Scholar 

  • Connors BA, Evan AP, Blomgren PM, His RS, Harper JD, Sorensen MD, Wang YN, Simon JC, Paun M, Starr F, Cunitz BW, Bailey MR (2014) Comparison of tissue injury from a novel technique of focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy. J Urol 191:235–241

    Article  Google Scholar 

  • Coptcoat MJ, Miller RA, Wickham JEA (1987) The end of the stone age. BDI Publishing, London

    Google Scholar 

  • Curhan GC (2007) Epidemiology of stone disease. Urol Clin N Am 34:287–293

    Article  Google Scholar 

  • D’A Honey RJ, Luymes J, Weir MJ, Kodama R, Tariq N (2000) Mechanical percussion inversion can result in relocation of lower pole stone fragments after shock wave lithotripsy. Urology 55:204–206

    Article  Google Scholar 

  • D’Addessi A, Bongiovanni L, Sasso F, Gulino G, Falabella R, Bassi P (2008) Extracorporeal shockwave lithotripsy in pediatrics. J Endourol 22:1–12

    Article  Google Scholar 

  • da Cunha Lima JP, Duarte RJ, Cristofani LM, Srougi M (2007) Extracorporeal shock wave lithotripsy in children: results and short-term complications. Int J Urol 14:684–688

    Article  Google Scholar 

  • Dalrymple NC, Verga M, Anderson KR, Bove P, Covey AM, Rosenfield AT, Smith RC (1998) The value of unenhanced helical computerized tomography in the management of acute flank pain. J Urol 159:735–740

    Article  Google Scholar 

  • Davenport K, Minervini A, Keoghane S, Parkin J, Keeley FX, Timoney AG (2006) Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol 176:2055–2058

    Article  Google Scholar 

  • Dawson C, Corry DA, Bowsher WG, Nockler IB, Whitfield HN (1996) Use of image enhancement during lithotripsy. J Endourol 10:335–339

    Article  Google Scholar 

  • De Sio M, Autorino R, Quarto G, Mordente S, Giugliano F, Di Giacomo F, Neri F, De Domenico R, D´Armiento M (2007) A new transportable shock-wave lithotripsy machine for managing urinary stones: a single centre experience with a dual-focus lithotripter. Br J Urol Int 100:1137–1141

    Google Scholar 

  • Deaconson TF, Condon RE, Weitekamp LA, Kretzschmar S, Begun FP, Lawson RK (1989) Biliary lithotripsy: determination of stone fragmentation success and potential tissue injury in swine. Arch Surg 124:916–921

    Article  Google Scholar 

  • Delhaye M, Vandermeeren A, Baize M, Cremer M (1992) Extracorporeal shock wave lithotripsy of pancreatic calculi. Gastroenterology 102:610–620

    Article  Google Scholar 

  • Delius M, Enders G, Heine G, Stark J, Remberger K, Brendel W (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs—pressure dependence. Ultrasound Med Biol 13:61–67

    Article  Google Scholar 

  • Delius M, Brendel W, Heine G (1988a) A mechanism of gallstone destruction by extracorporeal shock waves. Naturwissenschaften 75:200–201

    Article  ADS  Google Scholar 

  • Delius M, Enders G, Heine G (1988b) Biological effects of shock waves: kidney hemorrhage by shock waves in dogs—dose dependence. Ultrasound Med Biol 14:117–122

    Article  Google Scholar 

  • Delius M, Jordan M, Eizenhoefer H, Marlinghaus E, Heine G, Liebich HG, Brendel W (1988d) Biological effects of shock waves: kidney hemorrhage by shock waves in dogs – administration rate dependence. Ultrasound Med Biol 14:689–694

    Article  Google Scholar 

  • Delius M, Denk R, Berding C, Liebich HG, Jordan M, Brendel W (1990a) Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16:467–472

    Article  Google Scholar 

  • Delius M, Mueller W, Goetz A, Liebich HG, Brendel W (1990b) Biological effects of shock waves: kidney hemorrhage in dogs at a fast shock wave administration rate of fifteen hertz. J Lithotr Stone Dis 2:103–110

    Google Scholar 

  • Delius M, Xuan Z, Liebich H, Brendel W (1990c) Biological effects of shock waves: kidney damage by shock waves in dogs–dose dependence. Ultrasound Med Biol 14:117–122

    Article  Google Scholar 

  • Delvecchio F, Auge BK, Munver R, Brown SA, Brizuela R, Zhong P, Preminger GM (2003) Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. J Urol 169:1526–1529

    Article  Google Scholar 

  • Demirbas M, Kose AC, Samli M, Guler C, Kara T, Karalar M (2004) Extracorporeal shockwave lithotripsy for solitary distal ureteral stones: does the degree of urinary obstruction affect success? J Endourol 18:237–240

    Article  Google Scholar 

  • Demirci D, Sofikerim M, Yalcin E, Ekmekcioglu O, Gülmez I, Karacagil M (2007) Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J Endourol 21:1407–1410

    Article  Google Scholar 

  • Demirkesen O, Onal B, Tansu N, Altintas R, Yalcin V, Oner A (2006) Efficacy of extracorporeal shock wave lithotripsy for isolated lower caliceal stones in children compared with stones in other renal locations. Urology 67:170–174

    Article  Google Scholar 

  • den Toom R, Nijs HG, van Blankenstein M, Laméris JS, Schröder FH, Terpstra OT (1991) Extracorporeal shock wave treatment of common bile duct stones: experience with two different lithotriptors at a single institution. Br J Surg 78:809–813

    Article  Google Scholar 

  • Denstedt JD, Clayman RV, Preminger GM (1990) Efficiency quotient as a means of comparing lithotripters. J Endourol 4(Suppl):S100

    Google Scholar 

  • Desmots F, Chossegros C, Salles F, Gallucci A, Moulin G, Varoquaux A (2014) Lithotripsy for salivary stones with prospective US assessment on our first 25 consecutive patients. J Craniomaxillofac Surg 42:577–582

    Article  Google Scholar 

  • Dhar NB, Thornton J, Karafa MT, Streem SB (2004) A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J Urol 172:2271–2274

    Article  Google Scholar 

  • Di Grazia E (2010) Extracorporeal shock wave lithotripsy: detrimental effects and clinical complications. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 119–136

    Google Scholar 

  • Doublet JD, Tchala K, Tligui M, Ciofu C, Gattegno B, Thibault P (1997) In situ extracorporeal shock wave lithotripsy for acute renal colic due to obstructing ureteral stones. Scand J Urol Nephrol 31:137–139

    Article  Google Scholar 

  • Dretler SP, Polykoff G (1996) Calcium oxalate stone morphology: fine tuning our therapeutic distinctions. J Urol 155:828–833

    Article  Google Scholar 

  • Dretler SP, Spencer BA (2001) CT and stone fragility. J Endourol 15:31–36

    Article  Google Scholar 

  • Dreyer T, Krauss W, Bauer E, Riedlinger RE (2000) Investigations of compact self focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy. In: Schmeider SC, Levy M, McAvoy BR (eds) Proceeding of the IEEE ultrasonics symposium; 22–25 October 2000; San Juan, Puerto Rico. New York: Institute of Electrical and Electronic Engineers, 2000, vol 2, pp 1239–1242. doi:10.1109/ULTSYM.2000.921547

  • Dumonceau JM, Costamagna G, Tringali A, Vahedi K, Delhaye M, Hittelet A, Spera G, Giostra E, Mutignani M, De Maertelaer V, Devière J (2007) Treatment for painful calcified chronic pancreatitis: extracorporeal shock wave lithotripsy versus endoscopic treatment: a randomised controlled trial. Gut Int J Gastroenterol Hepatol 56:545–552

    Google Scholar 

  • Dunmire B, Lee FC, Hsi RS, Cunitz BW, Paun M, Bailey MR, Sorensen MD, Harper JD (2015) Tools to improve the accuracy of kidney stone sizing with ultrasound. J Endourol 29:147–152

    Article  Google Scholar 

  • Dunmire B, Harper JD, Cunitz BW, Lee FC, Hsi RS, Liu Z, Bailey MR, Sorensen MD (2016) Use of the acoustic shadow width to determine kidney stone size with ultrasound. J Urol 195:171–177

    Article  Google Scholar 

  • Duryea AP, Roberts WW, Cain CA, Hall TL (2013) Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro. IEEE Trans Ultrason Ferroelectr Freq Control 60:301–309

    Article  Google Scholar 

  • Duryea AP, Cain CA, Roberts WW, Tamaddoni HA, Hall TL (2014) Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study. J Endourol 28:90–95

    Article  Google Scholar 

  • Eassa WA, Sheir KZ, Gad HM, Dawaba ME, El-Kenawy MR, Elkappany HA, Duane BD (2008) Prospective study of the long-term effects of shock wave lithotripsy on renal function and blood pressure. J Urol 179:964–968

    Article  Google Scholar 

  • Eichel L, Batzold P, Erturk E (2001) Operator experience and adequate anesthesia improve treatment outcome with third-generation lithotripters. J Endourol 15:671–673

    Article  Google Scholar 

  • Eisenmenger W (2001) The mechanism of stone fragmentation in ESWL. Ultrasound Med Biol 27:683–693

    Article  Google Scholar 

  • Eisenmenger W, Du X, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of wide-focus and low-pressure ESWL. Ultrasound Med Biol 28:769–774

    Article  Google Scholar 

  • El-Assmy A, El-Nahas AR, Mohamed E (2006a) Predictors of success after extracorporeal shock wave lithotripsy (ESWL) for renal calculi between 20–30 mm: a multivariate analysis model. Sci World J 6:2388–2390

    Article  Google Scholar 

  • El-Assmy A, El-Nahas AR, Sheir KZ (2006b) Is pre-shock wave lithotripsy stenting necessary for ureteral stones with moderate or severe hydronephrosis? J Urol 176:2059–2062

    Article  Google Scholar 

  • El-Assmy A, El-Nahas AR, Youssef RF, El-Hefnawy AS, Sheir KZ (2007) Impact of the degree of hydronephrosis on the efficacy of in situ extracorporeal shock-wave lithotripsy for proximal ureteral calculi. Scand J Urol Nephrol 41:208–213

    Article  Google Scholar 

  • Elkoushy MA, Hassan JA, Morehouse DD, Anidjar M, Andonian S (2011) Factors determining stone-free rate in shock wave lithotripsy using standard focus of Storz Modulith SLX-F2 lithotripter. Urology 78:759–763

    Article  Google Scholar 

  • Ell C, Kerzel W, Heyder N, Rödl W, Langer H, Mischke U, Giedl J, Domschke W (1989) Tissue reactions under piezoelectric shockwave application for the fragmentation of biliary calculi. Gut Int J Gastroenterol Hepatol 30:680–685

    Google Scholar 

  • Ell C, Kerzel W, Schneider HT, Benninger J, Wirtz P, Domschke W, Hahn EG (1990) Piezoelectric lithotripsy: stone disintegration and follow-up results in patients with symptomatic gallbladder stones. Gastroenterology 99:1439–1444

    Google Scholar 

  • El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ (2007) A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol 51:1688–1694

    Article  Google Scholar 

  • Elsobky E, Sheir KZ, Madbouly K, Mokhtar AA (2000) Extracorporeal shock wave lithotripsy in children: experience using two second-generation lithotripters. Br J Urol Int 86:851–856

    Article  Google Scholar 

  • Erdogru T, Kutlu O, Cubuk M, Ishak Y, Danisman A, Luleci E, Baykara M (2005) The stone density: is it a useful parameter for predicting outcome of ESWL in kidney stones? J Endourol 19(Suppl 1):A86

    Google Scholar 

  • Escudier MP, Brown JE, Drage NA, McGurk M (2003) Extracorporeal shockwave lithotripsy in the management of salivary calculi. Br J Surg 90:482–485

    Article  Google Scholar 

  • Escudier MP, Brown JE, Putcha V, Capaccio P, McGurk M (2010) Factors influencing the outcome of extracorporeal shock wave lithotripsy in the management of salivary calculi. Laryngoscope 120:1545–1549

    Article  Google Scholar 

  • Eterovic D, Juretic-Kuscis L, Capkun V, Dujic Z (1999) Pyelolithotomy improves while extracorporeal lithotripsy impairs kidney function. J Urol 161:39–44

    Article  Google Scholar 

  • Evan AP, McAteer JA (1996a) Current perspectives on shock wave lithotripsy. In: Lingeman JE, Preminger GM (eds) New developments in the management of urolithiasis. Igaku-Shoin Medical Publications, New York, pp 3–20

    Google Scholar 

  • Evan AP, Willis LR (2007) Extracorporeal shock wave lithotripsy: complications. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 353–365

    Google Scholar 

  • Evan AP, Willis LR, Lingeman JE, McAteer JA (1998b) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78:1–8

    Article  Google Scholar 

  • Evan AP, Willis LR, McAteer JA, Bailey MR, Connors BA, Shao Y, Lingeman JE, Williams JC Jr, Fineberg NS, Crum LA (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in SWL. J Urol 168:1556–1562

    Article  Google Scholar 

  • Evan AP, Willis LR, Lingeman JE (2003) Shock wave lithotripsy (SWL) induces significant structural and functional changes in the kidney. J Acoust Soc Am 114:2454

    Article  ADS  Google Scholar 

  • Evan AP, McAteer JA, Williams JC Jr, Willis LR, Bailey MR, Crum LA, Lingeman JE, Cleveland RO (2004) Shock wave physics of lithotripsy: mechanisms of shock wave action and progress toward improved SWL. In: Moore R, Bishoff JT, Loening S, Docino SG (eds) Textbook of minimally invasive urology. Martin Dunitz Limited, London, pp 425–438

    Google Scholar 

  • Evan AP, McAteer JA, Connors BA, Blomgren PM, Lingeman JE (2007) Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. Br J Urol Int 100:624–627

    Article  Google Scholar 

  • Evan AP, McAteer JA, Connors BA, Pishchalnikov YA, Handa RK, Blomgren P, Willis LR, Williams JC Jr, Lingeman JE, Gao S (2008) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Br J Urol Int 101:382–388

    Article  Google Scholar 

  • Evan AP, Coe FL, Connors BA, Handa RK, Lingeman JE, Worcester EM (2015) Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones. Am J Physiol Renal Physiol 308:F938–F949

    Article  Google Scholar 

  • Falahatkar S, Khosropanah I, Vajary AD, Bateni ZH, Khosropanah D, Allahkha HA (2011) Is there a role for tamsulosin after shock wave lithotripsy in the treatment of renal and ureteral calculi? J Endourol 25:495–498

    Article  Google Scholar 

  • Faragalla Y, Elsheikh AM, Shehata WG (2004) Apparatus for extracorporeal shock wave lithotripter using at least two shock wave pulses. United States Patent US 6780161 B2, 24 Aug 2004, 6 p, Int Cl A161B17/22, A61B17/225

    Google Scholar 

  • Favela R, Gutiérrez J, Bustos J, Castaño-Tostado E, Loske AM (2005) CT attenuation value and shockwave fragmentation. J Endourol 19:5–10

    Article  Google Scholar 

  • Fayad A, El-Sheikh MG, El-Fayoumy H, El-Sergany R, Abd El Bary A (2012) Effect of extracorporeal shock wave lithotripsy on kidney growth in children. J Urol 188:928–931

    Article  Google Scholar 

  • Felix MP, Ellis AT (1971) Laser-induced liquid breakdown—a step-by-step account. Appl Phys Lett 19:484–486

    Article  ADS  Google Scholar 

  • Fernández F, Loske AM, Zendejas H, Castaño E, Paredes M (2005) Desarrollo de un litotriptor extracorporal más eficiente. Rev Mex Ingen Bioméd 21:7–15 (in Spanish)

    Google Scholar 

  • Fernández F, Fernández G, Loske AM (2009a) The importance of an expansion chamber during standard and tandem extracorporeal shockwave lithotripsy. J Endourol 23:693–697

    Article  Google Scholar 

  • Fernández F, Fernández G, Loske AM (2009b) Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study. J Endourol 23:1247–1253

    Article  Google Scholar 

  • Fernández F, Domínguez A, Castaño E, Loske AM (2013) Out-of-focus low pressure pulse pre-treatment to the whole kidney in order to reduce renal injury during SWL: an in vivo study using a rabbit model. J Endourol 27:774–782

    Article  Google Scholar 

  • Ferrandino MN, Pierre SA, Simmons WN, Paulson EK, Albala DM, Preminger GM (2010) Dual-energy computed tomography with advanced postimage acquisition data processing: improved determination of urinary stone composition. J Endourol 24:347–354

    Article  Google Scholar 

  • Fokas K, Putzer P, Dempf R, Eckardt A (2002) Extracorporeal shockwave lithotripsy for treatment of sialolithiasis of salivary glands. Laryngorhinootologie 81:706–711 (in German)

    Article  Google Scholar 

  • Fonseca R (2005) Litotricia extracorpórea pre-focal con ondas de choque [Postgraduate Thesis], Guadalajara, Jal. University of Guadalajara, Mexico, 48 p

    Google Scholar 

  • Frick J, Köhle R, Kunit G (1998) Extracorporeal shock wave lithotripsy for large stones. Dornier User Lett 4:21

    Google Scholar 

  • Fuchs GJ, Chaussy CG, Fuchs AM (1988) Management of complications following extracorporeal shock wave lithotripsy: steinstrasse. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy. Springer Science and Business Media, New York, pp 47–53

    Chapter  Google Scholar 

  • Fuselier HA, Prats L, Fontenot C, Gauthier A (1999) Comparison of mobile lithotripters at one institution: Healthtronics Lithotron, Dornier MFL-5000 and Dornier Doli. J Endourol 13:539–542

    Article  Google Scholar 

  • Galvin DJ, Pearle MS (2006) The contemporary management of renal and ureteric calculi. Br J Urol Int 98:1283–1288

    Article  Google Scholar 

  • Ganem JP, Carson CC (1998) Cardiac arrhythmias with external fixed-rate signal generators in shock wave lithotripsy with the Medstone lithotripter. Urology 51:548–552

    Article  Google Scholar 

  • García Marchiñena P, Billordo Peres N, Liyo J, Ocantos J, Gonzalez M, Jurado A, Daels F (2009) CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro. Arch Esp Urol 62:215–221 (in Spanish)

    Article  Google Scholar 

  • Gerber R, Studer UE, Danuser H (2005) Is newer better? A comparative study of 3 lithotriptor generations. J Urol 173:2013–2016

    Article  Google Scholar 

  • Gillitzer R, Neisius A, Wöllner J, Hampel C, Brenner W, Bonilla AA, Thüroff J (2009) Low-frequency extracorporeal shock wave lithotripsy improves renal pelvic stone disintegration in a pig model. Br J Urol Int 103:1284–1288

    Article  Google Scholar 

  • Ginter S, Krauss W (2007) Wolf-innovative piezoelectric shock wave systems: Piezolith 3000 and Piezoson 100 plus. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 175–177

    Google Scholar 

  • Ginter S, Burkhardt M, Vallon P (2010) Richard Wolf: the piezoelectric ESWL—more than 20 years of clinical success worldwide. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy: applications in urology II: standards and recent developments. Thieme, Stuttgart, New York, pp 87–92

    Google Scholar 

  • Goktas C, Akca O, Horuz R, Gokhan O, Albayrak S, Sarica K (2011) SWL in lower calyceal calculi: evaluation of the treatment results in children and adults. Urology 78:1402–1406

    Article  Google Scholar 

  • González C, Cabrera J, Calahorra FJ, García J, Vela R (2000) LEOC eficaz, inmediata o de urgencia: una atractiva alternativa estratégica a considerar en el tratamiento del cólico renal. Actas Urol Esp 24:721–727 (in Spanish)

    Article  Google Scholar 

  • Graber SF, Danuser H, Hochreiter WW, Studer UE (2003) A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. J Urol 169:54–57

    Article  Google Scholar 

  • Graff J, Richter KD, Pastor J (1988a) Effect of high energy shock waves on bony tissue. Urol Res 16:252–258

    Google Scholar 

  • Graff J, Schmidt A, Pastor J, Herberhold D, Rassweiler J, Hankemeier U (1988b) New generator for low pressure lithotripsy with the Dornier HM3: preliminary experience of two centers. J Urol 139:904–907

    Google Scholar 

  • Granz P, Köhler D (1992) What makes shock waves efficient in lithotripsy? J Lithotr Stone Dis 4:123–128

    Google Scholar 

  • Granz B, Nanke R, Fehre J, Pfister T, Engelbrecht R (2004) Light spot hydrophone, innovation in lithotripsy. Med Solut 6:86–87

    Google Scholar 

  • Graversen JA, Korets R, Hruby GW, Valderrama OM, Mues AC, Katsumi HK, Cortes JA, Landman J, Gupta M (2011) Evaluation of bioimpedance as novel predictor of extracorporeal shockwave lithotripsy success. J Endourol 25:1503–1506

    Article  Google Scholar 

  • Greenstein A, Matzkin H (1999) Does the rate of extracorporeal shock wave delivery affect stone fragmentation? Urology 54:430–432

    Article  Google Scholar 

  • Greenstein A, Sofer M, Matzkin H (2004) Efficacy of the Duet lithotripter using two energy sources for stone fragmentation by shock waves: an in vitro study. J Endourol 18:942–945

    Article  Google Scholar 

  • Greiner L, Münks C, Heil W, Jakobeit C (1990) Gallbladder stone fragments in feces after biliary extracorporeal shock-wave lithotripsy. Gastroenterology 98:1620–1624

    Article  Google Scholar 

  • Grenabo L, Lindquist K, Adami HO, Bergstrom R, Petterson S (1997) Extracorporeal shock wave lithotripsy for the treatment of renal stones. Arch Surg 132:20–26

    Article  Google Scholar 

  • Griffin SJ, Margaryan M, Archambaud F, Sergent-Alaoui A, Lottmann HB (2010) Safety of shock wave lithotripsy for treatment of pediatric urolithiasis: 20-year experience. J Urol 183:2332–2336

    Article  Google Scholar 

  • Gronau E, Pannek J, Böhme M, Senge T (2003) Results of extracorporeal shock wave lithotripsy with a new electrohydraulic shock wave generator. Urol Int 71:355–360

    Article  Google Scholar 

  • Guda NM, Partington S, Freeman ML (2005) Extracorporeal shock wave lithotripsy in the management of chronic calcific pancreatitis: a meta-analysis. JOP 6:6–12

    Google Scholar 

  • Gunasekaran S, Donovan JM, Chvapil M, Drach GW (1989) Effects of extracorporeal shock wave lithotripsy on the structure and function of rabbit kidney. J Urol 141:1250–1254

    Google Scholar 

  • Gupta NP, Ansari MS, Kesarvani P, Kapoor A, Mukhopadhyay S (2005) Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. Br J Urol Int 95:1285–1288

    Article  Google Scholar 

  • Häcker A, Wess O (2010) The role of focal size in extracorporeal shock wave lithotripsy. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 81–99

    Google Scholar 

  • Häcker A, Leistner R, Marlinghaus E, Michel MS, Alken P, Knoll T (2005) Evaluation of shockwave-induced renal injury of a new shock wave lithotripter with user selectable dual focus size. J Endourol 19(Suppl 1):4

    Google Scholar 

  • Hammad FT, Kaya M, Kazim E (2009) Pediatric extracorporeal shockwave lithotripsy: its efficiency at various locations in the upper tract. J Endourol 23:229–236

    Article  Google Scholar 

  • Handa RK, McAteer JA, Willis LR, Pishchalnikov YA, Connors BA, Ying J, Lingeman JE, Evan AP (2007) Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. Br J Urol Int 99:1134–1142

    Article  Google Scholar 

  • Handa RK, Bailey MR, Paun M, Gao S, Connors BA, Willis LR, Evan AP (2009a) Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. Br J Urol Int 103:1270–1274

    Article  Google Scholar 

  • Handa RK, McAteer JA, Evan AP, Connors BA, Pishchalnikov YA, Gao S (2009b) Assessment of renal injury with a clinical dual head lithotripter delivering 240 shock waves per minute. J Urol 181:884–889

    Article  Google Scholar 

  • Handa RK, McAteer JA, Connors BA, Liu Z, Lingeman JE, Evan AP (2012) Optimizing an escalating shock wave amplitude treatment strategy to protect the kidney from injury during shock wave lithotripsy. Br J Urol Int 110:E1041–E1047

    Article  Google Scholar 

  • Handa RK, Evan AP, Connors BA, Johnson CD, Liu Z, Alloosh M, Sturek M, Evans-Molina C, Mandeville JA, Gnessin E, Lingeman JE (2014) Shock wave lithotripsy targeting of the kidney and pancreas does not increase the severity of metabolic syndrome in a porcine model. J Urol 192:1257–1265

    Article  Google Scholar 

  • Handa RK, Johnson CD, Connors BA, Evan AP, Phillips CL, Liu Z (2015a) Shock wave lithotripsy does not impair renal function in a swine model of metabolic syndrome. J Endourol 29:468–473

    Article  Google Scholar 

  • Handa RK, Liu Z, Connors BA, Alloosh M, Basile DP, Tune JD, Sturek M, Evan AP, Lingeman JE (2015b) Effect of renal shock wave lithotripsy on the development of metabolic syndrome in a juvenile swine model: a pilot study. J Urol 193:1409–1416

    Article  Google Scholar 

  • Hanna M (2013) SWL: extracorporeal shock wave lithotripsy tips and tricks. In: Tiselius HG (ed) Urology. Level10 Buchverlag, Heilbronn, pp 73–85 (Shock wave therapy in practice)

    Google Scholar 

  • Harada M, Inaba Y, Okamoto M (1994) Treatment of ureteral stones by extracorporeal shock wave lithotripsy: with ureteral catheter or in situ? J Endourol 8:9–11

    Article  Google Scholar 

  • Harper JD, Sorensen MD, Cunitz BW, Wang Y, Simon JC, Starr F, Paun M, Dunmire B, Liggitt HD, Evan AP, McAteer JA, His RS, Bailey MR (2013) Focused ultrasound to expel calculi from the kidney: safety and efficacy of a clinical prototype device. J Urol 190:1090–1095

    Article  Google Scholar 

  • Harper JD, Dunmire B, Wang YN, Simon JC, Liggitt D, Paun M, Cunitz BW, Starr F, Bailey MR, Penniston KL, Lee FC, Hsi RS, Sorensen MD (2014) Preclinical safety and effectiveness studies of ultrasonic propulsion of kidney stones. Urology 84:484–489

    Article  Google Scholar 

  • Harper JD, Dunmire B, Bailey MR, Cunitz BW, Thiel J, His R, Lee F, Lingeman JE, Coburn M, Wessells H, Sorensen MD (2016) Results of a single center first in human feasibility trial for ultrasonic propulsion of kidney stones. J Urol 195(4 Pt 1):956–964. doi:10.1016/j.juro.2015.10.131

    Article  Google Scholar 

  • Harrison JD (2009) Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin N Am 42:927–947

    Article  Google Scholar 

  • Hartung A, Schwarze W (2010) LithoSpace by AST GmbH. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II: standards and recent developments. Thieme, Stuttgart, pp 53–56

    Google Scholar 

  • Hassouna ME, Oraby S, Sameh W, El-Abbady A (2011) Clinical experience with shock-wave lithotripsy using the Siemens Modularis Vario lithotripter. Arab J Urol 9:101–105

    Article  Google Scholar 

  • Heimbach D, Munver R, Zhong P, Jacobs J, Hesse A, Müller C, Preminger GM (2000) Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones. J Urol 164:537–544

    Article  Google Scholar 

  • Hesse A, Brändle E, Wilbert D, Köhrmann KU, Alken P (2003) Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol 44:709–713

    Article  Google Scholar 

  • Hessling KH, Schlick RW, Luckey R, Gratz K, Qaiyumi SAA, Allhoff EP (1993) Die therapeutische Wertigkeit der ambulanten extrakorporalen Stosswellenlithotripsie von Speichelsteinen. Ergebnisse einer prospektiven Studie. Laryngo-Rhino-Otologie 72:109–115 (in German)

    Article  Google Scholar 

  • Hickman MS, Schwesinger WH, Bova JD, Kurtin WE (1986) Computed tomographic analysis of gallstones: an in vitro study. Arch Surg 121:289–291

    Article  Google Scholar 

  • Hiros M, Spahovic H, Selimovic M, Sadovic S (2011) Extracorporeal shock wave lithotripsy and intravenous contrast media application for localization of radiolucent calculi. Med Arch 65:86–88

    Google Scholar 

  • Honda M, Maeda S, Takasaki E (1989) Clinical application of extracorporeal microexplosive lithotripsy. Hinyokika Kiyo 35:385–392 (in Japanese)

    Google Scholar 

  • Honey RJ, Healy M, Yeung M, Psihramis KE, Jewett MA (1992) The use of an abdominal compression belt to reduce stone movement during extracorporeal shock wave lithotripsy. J Urol 148:1034–1035

    Google Scholar 

  • Hood KA, Keightley A, Dowling RH, Dick JA, Mallinson CN (1988) Piezo-ceramic lithotripsy of gallbladder stones: initial experience in 38 patients. Lancet 1:1322–1324

    Article  Google Scholar 

  • Hosseini SHR, Takayama K (2004) Study of micro shock waves and cavitation generated by Ho: YAG laser beam for medical application. In: Behnia M, Lin W, McBain GD (eds) Proceedings of the 15th Australasian fluid mechanics conference, University of Sydney, Sydney, Australia, 13–17 Dec 2003

    Google Scholar 

  • Huber P, Jöchle K, Debus J (1998) Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter. Phys Med Biol 43:3113–3128

    Article  Google Scholar 

  • Huber P, Debus J, Jöchle K, Simiantonakis I, Jenne J, Rastert R, Spoo J, Lorenz WJ, Wannenmacher M (1999a) Control of cavitation activity by different shockwave pulsing regimes. Phys Med Biol 44:1427–1437

    Article  Google Scholar 

  • Hurtado F, Gutierrez J, Castaño-Tostado E, Bustos J, Mues E, Quintero M, Méndez A, Loske AM (2007) In vivo relationship between CT attenuation value and shockwave fragmentation. J Endourol 21:343–346

    Article  Google Scholar 

  • Hwang I, Jung SI, Kim KH, Hwang EC, Yu HS, Kim SO, Kang TW, Kwon DD, Park K (2014) Factors influencing the failure of extracorporeal shock wave lithotripsy with Piezolith 3000 in the management of solitary ureteral stone. Urolithiasis 42:263–267

    Article  Google Scholar 

  • Inui K, Tazuma S, Yamaguchi T, Ohara H, Tsuji T, Miyagawa H, Igarashi Y, Nakamura Y, Atomi Y (2005) Treatment of pancreatic stones with extracorporeal shock wave lithotripsy: results of a multicenter survey. Pancreas 30:26–30

    Google Scholar 

  • Iro H, Nitsche N, Schneider TH, Ell C (1989) Extracorporeal shockwave lithotripsy of salivary gland stones. Lancet 2(8654):115. doi:10.1016/S0140-6736(89)90365-6

    Article  Google Scholar 

  • Iro H, Benzel W, Zenk J, Meier J, Nitsche N, Wirtz PM, Ell C (1990a) Gewebereaktionen unter Applikation von piezoelektrischen Stosswellen zur Lithotripsie von Speichelsteinen (Tissue reaction under application of piezoelectric shockwaves to fragment salivary stones). Laryngorhinootologie 69:102–107 (in German)

    Article  Google Scholar 

  • Iro H, Schneider T, Nitsche N, Waitz G, Ell C (1990b) Extrakorporale Lithotripsie von Speichelsteinen. Erste klinische Erfahrungen (Extracorporeal piezoelectric lithotripsy of salivary calculi. Initial clinical experiences). HNO 38:251–255 (in German)

    Google Scholar 

  • Iro H, Nitsche N, Meier J, Wirtz PM, Ell C (1991) Piezoelectric shock wave lithotripsy of salivary gland stones: an in vitro feasibility study. J Lithotr Stone Dis 3:211–216

    Google Scholar 

  • Iro H, Fodra C, Waitz G, Nitsche N, Heinritz HH, Schneider HT, Benninger J, Ell C (1992) Shockwave lithotripsy of salivary duct stones. Lancet 339:1333–1336

    Article  Google Scholar 

  • Iro H, Zenk J, Escudier MP, Nahlieli O, Capaccio P, Katz P, Brown J, McGurk M (2009) Outcome of minimally invasive management of salivary gland calculi in 4691 patients. Laryngoscope 119:263–268

    Article  Google Scholar 

  • Ise H, Kitayama O, Matsuno S, Takayama K, Okawa T (1995) Extracorporeal shock wave gallstone lithotripsy. In: Brun R, Dumitrescu LZ (eds) Shock waves @ Marseille III: Shock waves in condensed matter and heterogeneous media. Proceedings of the 19th international symposium on shock waves, Springer Verlag, Heidelberg, Berlin, Marseille, France, Pt 5, pp 435–438, 26–30 July 1993. doi:10.1007/978-3-642-78835-2_74

  • Istanbulluoglu MO, Hoscan MB, Tekin MI, Cicek T, Ozturk B, Ozkardes H (2011) Shock wave lithotripsy for distal ureteric stones: supine or prone. Urol Res 39:177–180

    Article  Google Scholar 

  • Jagtap J, Mishra S, Bhattu A, Ganpule A, Sabnis R, Desai M (2014) Evolution of shockwave lithotripsy (SWL) technique: a 25-year single centre experience of >5000 patients. Br J Urol Int 114:748–753

    Article  Google Scholar 

  • Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51:1680–1686

    Article  Google Scholar 

  • Janetschek G, Frauscher F, Knapp R, Höfle G, Peschel R, Bartsch G (1997) New onset hypertension after extracorporeal shock wave lithotripsy: age related incidence and prediction by intrarenal resistive index. J Urol 158:346–351

    Article  Google Scholar 

  • Jayanthi VR, Arnold PM, Koff SA (1999) Strategies for managing upper tract calculi in young children. J Urol 162:1234–1237

    Article  Google Scholar 

  • Jenkins A, Gillenwater J (1988) Extracorporeal shock wave lithotripsy in prone position: treatment of stones in distal ureter or anomalous kidney. J Urol 139:911–915

    Google Scholar 

  • Jocham D, Liedl B, Chaussy C, Schmiedt E (1987) Preliminary clinical experience with the HM-4 bath-free Dornier lithotriptor. World J Urol 5:208–212

    Article  Google Scholar 

  • Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971

    Article  Google Scholar 

  • Joshi HB, Obadeyi OO, Rao PN (1999) A comparative analysis of nephrostomy, JJ stent and urgent in situ extracorporeal shock wave lithotripsy for obstructing ureteric stones. Br J Urol 84:264–269

    Article  Google Scholar 

  • Kacker R, Zhao L, Macejko A, Thaxton CS, Stern J, Liu JJ, Nadle RB (2008) Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol 179:1866–1871

    Article  Google Scholar 

  • Kanao K, Nakashima J, Nakagawa K, Asakura H, Miyajima A, Oya M, Ohigashi T, Murai M (2006) Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol 176:1453–1456

    Article  Google Scholar 

  • Kaneko H, Watanabe H, Takahashi T, Watanabe K, Akiyama K, Kondo K, Furue H, Oinuma S (1979) Studies on the application of microexplosion to medicine and biology: IV. Strength of wet and dry urinary calculi. Nihon Hinyokika Gakkai Zasshi 70:61–66 (in Japanese)

    Google Scholar 

  • Karalezli G, Gögüs O, Bedük Y, Köküuslu C, Sarica K, Kutsal O (1993) Histopathologic effects of extracorporeal shock wave lithotripsy on rabbit kidney. Urol Res 21:67–70

    Article  Google Scholar 

  • Karawi MAA, El-Sheikh Mohamed AR, El-Etaibi KE, Abomelha MS, Seed RF (1987) Extracorporeal shock-wave lithotripsy (ESWL)-induced erosions in upper gastrointestinal tract: prospective study in 40 patients. Urology 30:224–227

    Article  Google Scholar 

  • Kataoka H (1995) Cardiac dysrhythmias related to extracorporeal shock wave lithotripsy using a piezoelectric lithotriptor in patients with kidney stones. J Urol 153:1390–1394

    Article  Google Scholar 

  • Kater W, Meyer WW, Wehrmann T, Hurst A, Buhne P, Schlick R (1994) Efficacy, risks, and limits of extracorporeal shock wave lithotripsy for salivary gland stones. J Endourol 8:21–24

    Article  Google Scholar 

  • Kato Y, Yamaguchi S, Hori J, Okuyama M, Kakizaki H (2006) Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int J Urol 13:1461–1465

    Article  Google Scholar 

  • Kerbl K, Rehman J, Landman J, Lee D, Sundaram C, Clayman RV (2002) Current management of urolithiasis: progress or regress? J Endourol 16:281–288

    Article  Google Scholar 

  • Kim HG (2005) Role of extracorporeal shockwave lithotripsy for the treatment of pancreatic duct stone. Korean J Gastroenterol 46:418–422

    Google Scholar 

  • Kim SC, Moon YT (1997) Experience with EDAP LT02 extracorporeal shockwave lithotripsy in 1363 patients: comparison with results of LT01 SWL in 1586 patients. J Endourol 11:103–111

    Article  Google Scholar 

  • Kim SC, Burns EK, Lingeman JE, Paterson RF, McAteer JA, Williams JC Jr (2007) Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res 35:319–324

    Article  Google Scholar 

  • Knapp PM, Kulb TB, Lingeman JE, Newman DM, Mertz JHO, Mosgaugh PG, Steele RE (1988) Extracorporeal shock wave lithotripsy induced perirenal hematomas. J Urol 139:700–703

    Google Scholar 

  • Knoll T, Pearle MS (2013) Clinical management of urolithiasis. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Knoll T, Fritsche HM, Rassweiler J (2011) Aktuelle medizinische und ökonomische Aspekte der extrakorporalen Stosswellenlithotripsie (Medical and economic aspects of extracorporeal shock wave lithotripsy). Aktuelle Urol 42:363–367 (in German)

    Article  Google Scholar 

  • Köhrmann KU (2007) The future of SWL: a global perspective. In: Evan AP, Lingeman JE, Williams JC Jr (eds) Renal stone disease, 1st annual international urolithiasis research symposium, Proceeding, Indianapolis 2–3 Nov 2006, American Institute of Physics, Melville, New York, pp 340–350. doi:10.1063/1.2723593

  • Köhrmann KU, Rassweiller JJ, Manning M, Mohr G, Henkel TO, Jünemann KL, Alken P (1995) The clinical introduction of a third generation lithotripter: Modulith SL 20. J Urol 153:1379–1383

    Article  Google Scholar 

  • Koo V, Beattie I, Young M (2010) Improved cost-effectiveness and efficiency with a slower shockwave delivery rate. Br J Urol Int 105:692–696

    Article  Google Scholar 

  • Kozarek RA, Brandabur JJ, Ball TJ, Gluck M, Patterson DJ, Attia F, France R, Traverso LW, Koslowski P, Gibbons RP (2002) Clinical outcomes in patients who undergo extracorporeal shock wave lithotripsy for chronic calcific pancreatitis. Gastrointest Endosc 56:496–500

    Article  Google Scholar 

  • Král R, Krhut J, Míka D (2010) Srovnání úcinnosti litotrypse litotryptorem Piezolith 3000 Wolf a litotryptorem Medilit M6. Urologie pro praxi 11:216–217 (in Czech)

    Google Scholar 

  • Krambeck AE, Gettman MT, Rohlinger AL, Lohse CM, Patterson DE, Segura JW (2006) Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow-up. J Urol 175:1742–1747

    Article  Google Scholar 

  • Krambeck AE, Rule AD, Li X, Bergstralh EJ, Gettman MT, Lieske JC (2011) Shock wave lithotripsy is not predictive of hypertension among community stone formers at long-term followup. J Urol 185:164–169

    Article  Google Scholar 

  • Kravchick S, Bunkin I, Stepnov E, Peled R, Agulansky L, Cytron S (2005) Emergency extracorporeal shockwave lithotripsy for acute renal colic caused by upper urinary-tract stones. J Endourol 19:1–4

    Article  Google Scholar 

  • Krishnamurthi V, Streem SB (1995) Long-term radiographic and functional outcome of extracorporeal shock wave lithotripsy induced perirenal hematomas. J Urol 154:1673–1675

    Article  Google Scholar 

  • Krishnamurthy MS, Ferucci PG, Sankey N, Chandhoke PS (2005) Is stone radiodensity a useful parameter to predict outcome of extracorporeal shockwave lithotripsy for stones ≤2 cm? Int Braz J Urol 31:3–9

    Article  Google Scholar 

  • Kroovand RL (1997) Pediatric urolithiasis. Urol Clin N Am 24:173–184

    Article  Google Scholar 

  • Küfer R, Thamasett S, Volkmer B, Hautmann RE, Gschwend JE (2001) New-generation lithotripters for treatment of patients with implantable cardioverter defibrillator: experimental approach and review of literature. J Endourol 15:479–484

    Article  Google Scholar 

  • Kumar A, Gupta NP, Hemal AK, Wadhwa P (2007) Comparison of three analgesic regimens for pain control during shockwave lithotripsy using Dornier Delta Compact lithotripter: a randomized clinical trial. J Endourol 21:578–582

    Article  Google Scholar 

  • Kuwahara M, Kambe K, Kurosu S, Orikasa S, Takayama K (1986) Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves. J Urol 135:814–817

    Google Scholar 

  • Kuwahara M, Kambe K, Kurosu S, Kageyama S, Ioritani N, Orikasa S, Takayama K (1987) Clinical application of extracorporeal shock wave lithotripsy using microexplosions. J Urol 137:837–840

    Google Scholar 

  • Lambert EH, Walsh R, Moreno MW, Gupta M (2010) Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol 183:580–584

    Article  Google Scholar 

  • Lamport H, Newman HF, Eichhorn RD (1950) Fragmentation of biliary calculi by ultrasound. Fed Probat 9:73–74

    Google Scholar 

  • Lanski M, Ulucan N, Burnes L (2010) Lithoskop: discover the future of urology today. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II: standards and recent developments. Thieme, Stuttgart, pp 71–77

    Google Scholar 

  • Lauterborn W, Vogel A (2013) Shock wave emission by laser generated bubbles. In: Delale CF (ed) Bubble dynamics and shock waves, vol 8. Springer, Berlin, Heidelberg, pp 67–103. doi:10.1007/978-3-642-34297-4_3

    Chapter  Google Scholar 

  • Lautz J, Sankin G, Zhong P (2013) Turbulent water coupling in shock wave lithotripsy. Phys Med Biol 58:735–748

    Article  Google Scholar 

  • Lee JY, Moon YT (2011) Evaluation of the optimal frequency of and pretreatment with shock waves in patients with renal stones. Korean J Urol 52:776–781

    Article  Google Scholar 

  • Lee JH, Choi BK, Lee SJ, Lee CH, Kim JI, Jeon SH (2005) The effect of piezoelectric shock wave lithotripsy (EDAP LT02) for pediatric urolithiasis. Korean J Urol 46:25–31 (in Korean)

    Google Scholar 

  • Lee F, His R, Sorensen M, Dunmire B, Liu Z, Bailey M, Harper J (2015) Renal vasoconstriction occurs early during clinical SWL using a renal protection protocol. J Endourol 12:1392–1395

    Article  Google Scholar 

  • Leighton TG, Fedele F, Coleman AJ, McCarthy C, Ryves S, Hurrell AM, De Stefano A, White PR (2008) A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment. Ultrasound Med Biol 34:1651–1665

    Article  Google Scholar 

  • Leistner R, Wendt-Nordahl G, Grobholz R, Michel MS, Marlinghaus E, Köhrmann KU, Alken P, Häcker A (2007) A new electromagnetic shock-wave generator “SLX-F2” with user-selectable dual focus size: ex vivo evaluation of renal injury. Urol Res 35:165–171

    Article  Google Scholar 

  • Leveillee RJ, Zabbo A, Barrette D (1994) Stryker frame adaptation of the HM3 lithotriptor for treatment of distal ureteral calculi. J Urol 151:391–393

    Google Scholar 

  • Lifshitz DA, Williams JC, Sturtevant B, Connors BA, Evan AP, McAteer JA (1997) Quantitation of shock wave cavitation damage in vitro. Ultrasound Med Biol 23:461–471

    Article  Google Scholar 

  • Lifshitz DA, Lingeman JE, Zafar FS, Hollensbe DW, Nyhuis AW, Evan AP (1998) Alterations in predicted growth rates of pediatric kidneys treated with extracorporeal shockwave lithotripsy. J Endourol 12:469–475

    Article  Google Scholar 

  • Lingeman JE (1996) Extracorporeal shock wave lithotripsy devices: are we making progress? In: Lingeman JE, Preminger GM (eds) Topics in clinical urology. Igaku-Shoin Medical Publishers, New York, pp 79–96

    Google Scholar 

  • Lingeman JE (1997) Extracorporeal shock wave lithotripsy: development, instrumentation and current status. Urol Clin N Am 24:185–211

    Article  Google Scholar 

  • Lingeman JE (2007) Lithotripsy systems. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 333–342

    Google Scholar 

  • Lingeman JE, Safar FS (1996) Lithotipsy systems. In: Smith SD, Badlani GH, Bagley DH, Clayman RV, Jordan GH, Kavoussi LR (eds) Smith’s textbook of endourology. Quality Medical Publishers, St. Louis, pp 553–589

    Google Scholar 

  • Lingeman JE, Smith LH, Woods JR, Newman DM (1989) Urinary Calculi: ESWL, endourology and medical therapy. Lea and Febiger, Philadelphia

    Google Scholar 

  • Lingeman JE, Kim SC, Kuo RL, McAteer JA, Evan AP (2003) Shockwave lithotripsy. Anecdotes and insights. J Endourol 17:687–689

    Article  Google Scholar 

  • Lingeman JE, McAteer JA, Gnessin E, Evan AP (2009) Shock wave lithotripsy. Advances in technology and technique. Nat Rev Urol 6:660–670

    Article  Google Scholar 

  • Losek RL, Mauro LS (2008) Efficacy of tamsulosin with extracorporeal shock wave lithotripsy for passage of renal and ureteral calculi. Ann Pharmacother 42:692–697

    Article  Google Scholar 

  • Loske AM (2007) Shock wave physics for urologists. Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro, México

    Google Scholar 

  • Loske AM (2010) The role of energy density and acoustic cavitation in shock wave lithotripsy. Ultrasonics 50:300–305

    Article  Google Scholar 

  • Loske AM, Fernández F (2010) The development of tandem extracorporeal shock wave lithotripsy. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 137–149

    Google Scholar 

  • Loske AM, Prieto FE (1993) The influence of electrode shape on the performance of electrohydraulic lithotripters. J Lithotr Stone Dis 5:228–239

    Google Scholar 

  • Loske AM, Prieto FE (1996) Improving underwater shock wave focusing efficiency. In: Pak CYC, Resnick MI, Preminger GM (eds) Urolithiasis. Millet The Printer, Dallas, pp 401–402

    Google Scholar 

  • Loske AM, Prieto FE (2001) Dual-phase reflectors for extracorporeal shock wave lithotripsy. Phys Med 17:141–149

    Google Scholar 

  • Loske AM, Prieto FE (2002) Pressure-release versus rigid reflector for extracorporeal shockwave lithotripsy. J Endourol 16:273–280

    Article  Google Scholar 

  • Loske AM, Prieto FE, Fernández F, van Cauwelaert J (2002b) Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. J Phys Med Biol 47:3945–3957

    Article  Google Scholar 

  • Loske AM, Prieto FE, van Cauwelaert J, Fernández F (2002c) Piezoelectric tandem shock wave generation for extracorporeal shock wave lithotripters. Phys Med 18:7–14

    Google Scholar 

  • Loske AM, Méndez A, Fernández F, Busch H, Granizo M (2003) Conversion of an HM3 lithotripter into a research device. J Endourol 17:709–719

    Article  Google Scholar 

  • Loske AM, Gutiérrez J, Di Grazia E, Ferrnández F (2004a) Out-of-focus shockwaves: a new tissue-protecting therapy? Arch Ital Urol Androl 76:159–162

    Google Scholar 

  • Loske AM, Prieto FE, Gutiérrez J, Zendejas H, Saita A, Vélez E (2004b) Evaluation of a bifocal reflector on a clinical lithotripter. J Endourol 18:7–16

    Article  Google Scholar 

  • Loske AM, Fernández F, Zendejas H, Paredes M, Castaño-Tostado E (2005) Dual pulse shock wave lithotripsy: in vitro and in vivo study. J Urol 174:2388–2392

    Article  Google Scholar 

  • Lottmann H, Gagnadoux MF, Daudon M (2010) Urolithiasis in children. In: Gearhart JP, Rink RC, Mouriquand PDE (eds) Pediatric urology, 2nd edn. Saunders; Elsevier, Philadelphia, PA, pp 631–661

    Chapter  Google Scholar 

  • Lu J, Sun X, He L (2010) Sciaticum majus foramen and sciaticum minus foramen as the path of SWL in the supine position to treat distal ureteral stone. Urol Res 38:417–420

    Article  Google Scholar 

  • Lucio J II, Korkes F, Corrêa Lopes-Neto A, Gomes Silva E, Elias Mattos MH, Lima Pompeo AC (2011) Steinstrasse predictive factors and outcomes after extracorporeal shockwave lithotripsy. Int Braz J Urol 37:477–482

    Article  Google Scholar 

  • Lukes P, Clupek M, Babicky V, Sunka P (2008) Pulsed electrical discharge in water generated using porous-ceramic coated electrodes. IEEE Trans Plasma Sci 36:1146–1147

    Article  ADS  Google Scholar 

  • Lukes P, Sunka P, Hoffer P, Stelmashuk V, Benes J, Poucková P, Zadinová M, Zeman J (2012a) Generation of focused shock waves in water for biomedical applications. In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security, NATO science for peace and security series A: chemistry and biology. Springer, Rotterdam, pp 403–416. doi:10.1007/978-94-007-2852-3_31

    Google Scholar 

  • Lukes P, Sunka P, Hoffer P, Stelmashuk V, Pouckova P, Zadinova M, Zeman J, Dibdiak L, Kolarova H, Tomankova K, Binder S, Benes J (2014) Focused tandem shock waves in water and their potential application in cancer treatment. Shock Waves 24:51–57

    Article  ADS  Google Scholar 

  • Lukes P, Zeman J, Horák V, Hoffer P, Poucková P, Holubová M, Hosseini SHR, Akiyama H, Sunka P, Benes J (2015) In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques. J Bioelectrochem 103:103–110

    Article  Google Scholar 

  • Lukes P, Fernández F, Gutiérrez-Aceves J, Fernández E, Alvarez UM, Sunka P, Loske AM (2016) Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves 26:1–23

    Article  ADS  Google Scholar 

  • Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF (2005) Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 173:127–130

    Article  Google Scholar 

  • Makhlouf AA, Thorner D, Ugarte R, Monga M (2009) Shock wave lithotripsy not associated with development of diabetes mellitus at 6 years of follow-up. Urology 73:4–8

    Article  Google Scholar 

  • Maloney ME, Marguet CG, Zhou Y, Kang DE, Sung JC, Springhart WP, Madden J, Zhong P, Preminger GM (2006) Progressive increase of lithotripter output produces better in vivo stone comminution. J Endourol 20:603–606

    Article  Google Scholar 

  • Mancini JG, Neisius A, Smith N, Sankin G, Astroza GM, Lipkin ME, Simmons WN, Preminger GM, Zhong P (2013) Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model. J Urol 190:1096–1101

    Article  Google Scholar 

  • Marberger M, Türk C, Steinkogler I (1989) Piezoelectric extracorporeal shock wave lithotripsy in children. J Urol 142:349–352

    Google Scholar 

  • Marmary Y (1986) A novel and non-invasive method for the removal of salivary gland stones. Int J Oral Maxillofac Surg 15:585–587

    Article  Google Scholar 

  • Matlaga BR, Semins MJ (2009) How to improve results with extracorporeal shock wave lithotripsy. Ther Adv Urol 1:99–105

    Article  Google Scholar 

  • Mattelaer P, Schroder T, Fischer N, Jakse G (1994) In situ extracorporeal shockwave lithotripsy of distal ureteral stones: parameters for therapeutic success. Urol Int 53:87–91

    Article  Google Scholar 

  • Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, His RS, Harper JD, Bailey MR, Sorensen MD (2015) Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol 193:338–344

    Article  Google Scholar 

  • Mazzucchi E, Brito AH, Danilovic A, Ebaid GX, Chedid Neto E, Azevedo JR, Srougi M (2010) Comparison between two shock wave regimens using frequencies of 60 and 90 impulses per minute for urinary stones. Clinics (Sao Paulo) 65:961–965

    Article  Google Scholar 

  • McAteer JA, Baird T, Williams JC Jr, Hatt EK, Evan AP, Cleveland RO (2003) Voltage-stepping during SWL influences stone breakage independent of total energy delivered: in vitro studies with model stones. J Urol 169(Suppl):487

    Google Scholar 

  • McAteer JA, Bailey MR, Williams JC Jr, Cleveland RO, Evan AP (2005a) Strategies for improved shock wave lithotripsy. Minerva Urol Nefrol 57:271–287

    Google Scholar 

  • McAteer JA, Williams JC Jr, Cleveland RO, van Cauwelaert J, Bailey MR, Lifshitz DA, Evan AP (2005b) Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy. Urol Res 33:429–434

    Article  Google Scholar 

  • McGurk M, Escudier MP, Brown JE (2005) Modern management of salivary calculi. Br J Surg 92:107–112

    Article  Google Scholar 

  • McNicholas TA, Jones DJ, Russell G, Pope A, Timoney A, Carter S, Philp T, Wickham JEA (1989) Piezolithotripsy: experience with the Wolf Piezolith 2300. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy 2: urinary and biliary lithotripsy, Part IV. Plenum Press, New York, pp 381–385

    Chapter  Google Scholar 

  • Menon M, Parulkar BG, Drach GB (1998) Urinary lithiasis. In: Walsh PC, Retik AB, Vanghan ED, Wein AJ (eds) Campbell’s urology, 7th edn. WB Saunders, Philadelphia, pp 2659–2734

    Google Scholar 

  • Mezentsev VA (2005) Extracorporeal shock wave lithotripsy in the treatment of renal pelvicalyceal stones in morbidly obese patients. Int Braz J Urol 31:105–110

    Article  Google Scholar 

  • Micali S, Grande M, Sighinolfi MC, De Stefani S, Bianchi G (2007) Efficacy of expulsive therapy using nifedipine or tamsulosin, both associated with ketoprofene, after shock wave lithotripsy of ureteral stones. Urol Res 35:133–137

    Article  Google Scholar 

  • Miernik A, Wilhelm K, Ardelt P, Bulla S, Schoenthaler M (2012) Modern urinary stone therapy: is the era of extracorporeal shock wave lithotripsy at an end? Urologe A 51:372–378 (in German)

    Article  Google Scholar 

  • Miller HC, Collins LA, Turbow AM, Turbow BA, Beall ME, Berger RM, Lebowitz JM, Young IS, Kahn RI, Karol JB, Collins EJ, Getson PR (1989) Initial EDAP LT-01 lithotripsy group experience in the United States. J Urol 142:1412–1414

    Google Scholar 

  • Milovic V, Wehrmann T, Dietrich CF, Bailey AA, Caspary WF, Braden B (2011) Extracorporeal shock wave lithotripsy with a transportable minilithotripter and subsequent endoscopic treatment improves clinical outcome in obstructive calcific chronic pancreatitis. Gastrointest Endosc 74:1294–1299

    Article  Google Scholar 

  • Mishriki SF (1994) Quality assurance: monitoring lithotripter output and its clinical implications. J Urol 152:57–61

    Google Scholar 

  • Mitcheson HD, Zamenhof RG, Bankoff MS, Prien EL (1983) Determination of the chemical composition of urinary calculi by computerized tomography. J Urol 130:814–819

    Google Scholar 

  • Mobley TB, Myers DA, Grine WB, Jenkins JM, Jordan WR (1993) Low energy lithotripsy with Lithostar: treatment results with 19,962 renal and ureteral calculi. J Urol 149:1419–1424

    Google Scholar 

  • Montag S, Andonian S, Smith AD (2010) Extracorporeal shock wave lithotripsy: what is its current role in treating nephrolithiasis? What is the evidence for its long term complications? In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 21–45

    Google Scholar 

  • Moody JA, Evan AP, Lingeman JE (2001) Extracorporeal shock wave lithotripsy. In: Weiss RM, George NJR, O’Reilly PH (eds) Comprehensive urology. Doody Publishing, New York, pp 623–636

    Google Scholar 

  • Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675

    Article  Google Scholar 

  • Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W (2001) Hounsfield unit density in the determination of urinary stone composition. Urology 58:170–173

    Article  Google Scholar 

  • Mulagha E, Fromm HJ (2000) Extracorporeal shock wave lithotripsy of gallstones revisited: current status and future promises. J Gastroenterol Hepatol 15:239–243

    Article  Google Scholar 

  • Müller M (1987) Experimental investigations on focusing of weak spherical shock waves in water by shallow ellipsoidal reflectors. Acustica 64:85–93

    Google Scholar 

  • Mulvaney WP (1953) Attempted disintegration of calculi by ultrasonic vibrations. J Urol 70:704–707

    Google Scholar 

  • Murata S, Watanabe H, Takahashi T, Watanabe K, Furue H (1977) Studies on the application of microexplosion to medicine and biology. II. Construction and strength of urinary calculi. Nihon Hinyokika Gakkai Zasshi 68:249–257 (in Japanese)

    Google Scholar 

  • Muslumanoglu AY, Tefekli A, Sarilar O, Binbay M, Altunrende F, Ozkuvanci U (2003) Extracorporeal shock wave lithotripsy as first line treatment alternative for urinary tract stones in children: a large scale retrospective analysis. J Urol 170:2405–2408

    Article  Google Scholar 

  • Myers DA, Mobley TB, Jenkins JM, Grine WB, Jordan WR (1995) Pediatric low energy lithotripsy with the Lithostar. J Urol 153:453–457

    Article  Google Scholar 

  • Nahrwold DL (1993) Gallstone lithotripsy. Am J Surg 165:431–434

    Article  Google Scholar 

  • Naja V, Agarwal MM, Mandal AK, Singh SK, Mavuduru R, Kumar S, Acharya NC, Gupta N (2008) Tamsulosin facilitates earlier clearance of stone fragments and reduces pain after shockwave lithotripsy for renal calculi: results from an openlabel randomized study. Urology 72:1006–1011

    Article  Google Scholar 

  • Nakasato T, Morita J, Oqawa Y (2015) Evaluation of Hounsfield units as a predictive factor for the outcome of extracorporeal shock wave lithotripsy and stone composition. Urolithiasis 43:69–75

    Article  Google Scholar 

  • Neisius D (2006) Clinical experience with the latest generation piezoelectric extracorporeal shockwave lithotripsy system. Eur Kidney Urol Dis. 1–3.

    Google Scholar 

  • Neisius D, Gebhardt T, Seitz G, Ziegler M (1989a) Histological examination and laboratory analysis of the liver and gallbladder after application of extracorporeal shock waves to the gallbladder with the Piezolith 2200. J Lithotr Stone Dis 1:26–33

    Google Scholar 

  • Neisius A, Smith NB, Sankin G, Kuntz NJ, Madden JF, Fovargue DE, Mitran S, Lipkin ME, Simmons WN, Preminger GM, Zhong P (2014) Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proc Natl Acad Sci U S A 111:E1167–E1175

    Article  ADS  Google Scholar 

  • Neisius A, Lipkin ME, Rassweiler JJ, Zhong P, Preminger GM, Knoll T (2015) Shock wave lithotripsy: the new phoenix? World J Urol 33:213–221

    Article  Google Scholar 

  • Neucks JS, Pishchalnikov YA, Zancanaro AJ, VonDerHaar JN, Williams JC Jr, McAteer JA (2008) Improved acoustic coupling for shock wave lithotripsy. Urol Res 36:61–66

    Article  Google Scholar 

  • Newman DM, Coury T, Lingeman JE, Mertz JH, Mosbaugh PG, Steele RE, Knapp PM (1986) Extracorporeal shock wave lithotripsy experience in children. J Urol 136(1 Pt 2):238–240

    Google Scholar 

  • Ng CF, Luke S, Chiu PKF, Teoh JYC, Wong KT, Hou SSM (2015) The effect of renal cortical thickness on the treatment outcomes of kidney stones treated with shockwave lithotripsy. Korean J Urol 56:379–385

    Article  Google Scholar 

  • Nishiyama R, Kubota M, Kanno T, Okada T, Higashi Y, Yamada H (2014) Does SWL for ureteral stone with less than 60 shock waves per minute improve treatment results? Nihon Hinyokika Gakkai Zasshi 105:97–101 (in Japanese)

    Google Scholar 

  • Noack J, Vogel A (1998) Single-shot spatially resolved characterization of laser-induced shock waves in water. Appl Opt 37:4092–4099

    Article  ADS  Google Scholar 

  • Nomikos MS, Sowter SJ, Tolley DA (2007) Outcomes using a fourth-generation lithotripter: a new benchmark for comparison? Br J Urol Int 100:1356–1360

    Article  Google Scholar 

  • Numa H, Yoshida K, Kageyama Y, Hoshino Y (1994) In situ extracorporeal shock wave lithotripsy for ureteral stones causing acute renal failure. Hinyokika Kiyo 40:291–294 (in Japanese)

    Google Scholar 

  • Ong WC, Tandan M, Reddy V, Rao GV, Reddy N (2006) Multiple main pancreatic duct stones in tropical pancreatitis: safe clearance with extracorporeal shockwave lithotripsy. J Gastroenterol Hepatol 21:1514–1518

    Article  Google Scholar 

  • Orkisz M, Farchtchian T, Saighi D, Bourlion M, Thiounn N, Gimenez G, Debré B, Flam TA (1998) Image based renal stone tracking to improve efficacy in extracorporeal lithotripsy. J Urol 160:1237–1240

    Article  Google Scholar 

  • Oshita D, Hosseini SHR, Mawatari K, Nejad SM, Akiyama H (2014) Two successive shock waves generated by underwater pulse electric discharge for medical applications. IEEE Trans Plasma Sci 42:3209–3214

    Article  ADS  Google Scholar 

  • Ottaviani F, Capaccio P, Campi M, Ottaviani A (1996) Extracorporeal electromagnetic shock-wave lithotripsy for salivary gland stones. Laryngoscope 106:761–764

    Article  Google Scholar 

  • Ouzaid I, Al-qahtani S, Dominique S, Hupertan V, Fernandez P, Hermieu JF, Delmas V, Ravery V (2012) A 970 Hounsfield units (HU) threshold of renal stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. Br J Urol Int 110:E438–E442

    Article  Google Scholar 

  • Owen NR, Bailey MR, Maxwell A, MacConaghy B, Khokhlova TD, Crum LA (2004) Vibro-acoustography for targeting kidney stones during lithotripsy. J Acoust Soc Am 116:2509

    Article  ADS  Google Scholar 

  • Owen NR, Bailey MR, Crum LA, Sapozhnikov OA, Trusov LA (2007) The use of resonant scattering to identify stone fracture in shock wave lithotripsy. J Acoust Soc Am Express Lett 121:41–47

    Article  ADS  Google Scholar 

  • Ozgür BC, Irkilata L, Ekici M, Hoscan MB, Sarici H, Yücetürk CN, Karakan T, Atilla MK, Hascicek AM, Eroglu M (2016) Pediatric extracorporeal shock wave lithotripsy: multi-institutional results. Urologia 24(83):83–86

    Google Scholar 

  • Ozkan F, Erdemir F, Erkorkmaz U, Kaya Z, Senayli Y, Parlaktas BS (2012) Comparison of three different analgesic protocols during shockwave lithotripsy. J Endourol 26:691–696

    Article  Google Scholar 

  • Pace KT, Tariq N, Dyer SJ, Weir MJ, D’A Honey RJ (2001) Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol 166:2065–2071

    Article  Google Scholar 

  • Pace KT, Ghiculete D, Harju M, Honey RJ (2005) Shock wave lithotripsy at 60 or at 120 shocks per minute: a randomized, double-blind trial. J Urol 174:595–599

    Article  Google Scholar 

  • Paonessa J, Lingeman JE (2014) Extracorporeal shock wave lithotripsy: generators and treatment techniques. In: Grasso M, Golfarb DS (eds) Urinary stones: medical and surgical management. Wiley-Blackwell, Oxford, pp 216–226

    Chapter  Google Scholar 

  • Pareek G, Armenakas NA, Fracchia JA (2003) Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. J Urol 169:1679–1681

    Article  Google Scholar 

  • Pareek G, Armenakas NA, Panagopoulos G, Bruno JJ, Fracchia JA (2005a) Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 65:33–36

    Article  Google Scholar 

  • Pareek G, Hedigan SP, Lee FT, Nakada SY (2005b) Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology 66:941–944

    Article  Google Scholar 

  • Park BH, Choi H, Kim JB, Chang YS (2012) Analyzing the effect of distance from skin to stone by computed tomography scan on the extracorporeal shock wave lithotripsy stone-free rate of renal stones. Korean J Urol 53:40–43

    Article  Google Scholar 

  • Park YH, Lee HE, Park JY, Lee SB, Kim HH (2013) A prospective randomized controlled trial of the efficacy of tamsulosin after extracorporeal shock wave lithotripsy for a single proximal ureteral stone. Korean J Urol 54:527–530

    Article  Google Scholar 

  • Parsi MA, Stevens T, Lopez R, Vargo JJ (2010) Extracorporeal shock wave lithotripsy for prevention of recurrent pancreatitis caused by obstructive pancreatic stones. Pancreas 39:153–155

    Article  Google Scholar 

  • Partheymüller P (2010) Sonolith i-sys: the new standard in lithotripy. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II: standards and recent developments. Thieme Medical Publishers, Stuttgart, pp 65–70

    Google Scholar 

  • Patel T, Kozakowski K, Hruby G, Gupta M (2009) Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol 23:1383–1385

    Article  Google Scholar 

  • Paterson RF, Lifshitz DA, Lingeman JE, Evan AP, Connors BA, Fineberg NS, Williams JC Jr, McAteer JA (2002) Stone fragmentation in shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215

    Article  Google Scholar 

  • Pauletzki J, Sackmann M, Holl J, Paumgartner G (1997) Safety and efficacy of repeated shockwave lithotripsy of gallstones with and without adjuvant bile acid therapy. Gastroenterology 112:1603–1609

    Article  Google Scholar 

  • Pearle MS, Calhoun EA, Curhan GC (2005) Urologic diseases in America Project: urolithiasis. J Urol 173:848–857

    Article  Google Scholar 

  • Pemberton RJ, Tolley DA (2006) Comparison of a new-generation electroconductive spark lithotripter and the Dornier Compact Delta for ureteral calculi in a quaternary referral center. J Endourol 20:732–736

    Article  Google Scholar 

  • Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, D’A Honey RJ, Pace KT (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769

    Article  Google Scholar 

  • Philippou P, Lamrani D, Moraitis K, Bach C, Masood J, Buchholz N (2012) Is shock wave lithotripsy efficient for the elderly stone formers? Results of a matched-pair analysis. Urol Res 40:299–304

    Article  Google Scholar 

  • Phipps S, Stephenson C, Tolley D (2013) Extracorporeal shockwave lithotripsy to distal ureteric stones: the transgluteal approach significantly increases stone-free rates. Br J Urol Int 112:E129–E133

    Article  Google Scholar 

  • Pickard R, Starr K, MacLennan G, Lam T, Thomas R, Burr J, McPherson G, McDonald A, Anson K, N’Dow J, Burgess N, Clark T, Kilonzo M, Gillies K, Shearer K, Boachie C, Cameron S, Norrie J, McClinton S (2015) Medical expulsive therapy in adults with ureteric colic: a multicenter, randomized, placebo-controlled trial. Lancet 386:341–349

    Article  Google Scholar 

  • Pierre SA, Ferrandino MN, Simmons WN, Leitao VA, Sankin GN, Qin J, Preminger GM, Cocks FH, Zhong P (2008) Improvement in stone comminution of modern electromagnetic lithotripters by tandem pulse sequence. J Urol 179:590

    Article  Google Scholar 

  • Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Pishchalnikova IV, Williams JC Jr, McAteer JA (2005) Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses. Acoust Res Lett Online 6:280–286

    Article  Google Scholar 

  • Pishchalnikov YA, McAteer JA, Williams JC Jr, Pishchalnikova I, VonDerHaar RJ (2006a) Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J Endourol 20:537–541

    Article  Google Scholar 

  • Pishchalnikov YA, Neucks JS, Von der Haar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA (2006b) Air pockets trapped during routine coupling in dry head lithotripsy can significantly reduce the delivery of shock wave energy. J Urol 176:2706–2710

    Article  Google Scholar 

  • Pishchalnikov YA, McAteer JA, Williams JC Jr, Connors BA, Handa RK, Lingeman JE, Evan AP (2013) Evaluation of the LithoGold LG-380 lithotripter: in vitro acoustic characterization and assessment of renal injury in the pig model. J Endourol 27:631–639

    Article  Google Scholar 

  • Platonov MA, Gillis AM, Kavanagh KM (2008) Pacemakers, implantable cardioverter/defibrillators, and extracorporeal shockwave lithotripsy: evidence-based guidelines for the modern era. J Endourol 22:243–247

    Article  Google Scholar 

  • Ponchon T, Barkun AN, Berger F, Ayela P, Margonari J, Capron F (1989a) Experimental tissue lesions related to extracorporeal lithotripsy of gallbladder. Surg Gynecol Obstet 169:435–441

    Google Scholar 

  • Ponchon T, Barkun AN, Pujol B, Mestas JL, Lambert R (1989b) Gallstone disappearance after extracorporeal lithotripsy and oral bile acid dissolution. Gastroenterology 97:457–463

    Article  Google Scholar 

  • Portincasa P, van Erpecum KJ, van De Meeberg PC, Dallinga-Thie GM, de Bruin TW, van Berge-Henegouwen GP (1996) Apolipoprotein E4 genotype and gallbladder motility influence speed of gallstone clearance and risk of recurrence after extracorporeal shock-wave lithotripsy. Hepatology 24:580–587

    Article  Google Scholar 

  • Portincasa P, Moschetta A, Palasciano G (2006) Cholesterol gallstone disease. Lancet 368:230–239

    Article  Google Scholar 

  • Portincasa P, Di Ciaula A, Bonfrate L, Wang DQH (2012) Therapy of gallstone disease: what it was, what it is, what it will be. World J Gastrointest Pharmacol Ther 3:7–20

    Article  Google Scholar 

  • Portis AJ, Yan Y, Pattaras JG, Andreoni C, Moore R, Clayman RV (2003) Matched pair analysis of shock wave lithotripsy effectiveness for comparison of lithotripters. J Urol 169:58–62

    Article  Google Scholar 

  • Preminger GM (1989) Sonographic piezoelectric lithotripsy: more bang for your buck. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy 2: urinary and biliary lithotripsy, Part VI. Plenum, New York, pp 437–443

    Chapter  Google Scholar 

  • Preminger GM (1995) Shock wave lithotripsy: what progress have we made? J Urol 153:602–603

    Article  Google Scholar 

  • Preminger G, Badlani G, Kavoussi L (eds) (2012) Smith’s textbook on endourology. John Wiley and Sons, West Sussex

    Google Scholar 

  • Prieto FE, Loske AM (1999) Bifocal reflector for electrohydraulic lithotripters. J Endourol 13:65–75

    Article  Google Scholar 

  • Prieto FE, Loske AM, Yarger FL (1991) An underwater shock wave research device. Rev Sci Instrum 62:1849–1854

    Article  ADS  Google Scholar 

  • Pryor JL, Jenkins AD (1990) Use of double-pigtail stents in extracorporeal shock wave lithotripsy. J Urol 143:475–478

    Google Scholar 

  • Puppo P (2006) Steinstrasse 20 years later: still a problem after ESWL? Eur Urol 50:643–647

    Article  Google Scholar 

  • Qin J, Simmons WN, Sankin G, Zhong P (2010) Effect of lithotripter focal width on stone comminution in shock wave lithotripsy. J Acoust Soc Am 127:2635–2645

    Article  ADS  Google Scholar 

  • Rabenstein T, Radespiel-Troger M, Hopfner L, Benninger J, Farnbacher M, Greess H, Lenz M, Hahn EG, Schneider HT (2005) Ten years experience with piezoelectric extracorporeal shockwave lithotripsy of gallbladder stones. Eur J Gastroenterol Hepatol 17:525–527

    Article  Google Scholar 

  • Ramaswamy K, Marx V, Laser D, Kenny T, Chi T, Bailey M, Sorensen M, Grubbs R, Stoller M (2015) Targeted microbubbles: a novel application for treatment of urinary stones. Br J Urol Int 116:9–16

    Article  Google Scholar 

  • Rassweiler J, Alken P (1990) ESWL 90-state of the art: limitations and future trends of shock wave lithotripsy. Urol Res 18(Suppl 1):13–23

    Article  Google Scholar 

  • Rassweiler J, Gumpinger R, Mayer R, Kohl H, Schmidt A, Eisenberger F (1987) Extracorporeal piezoelectric lithotripsy using the Wolf-lithotriptor versus low energy lithotripsy with the modified Dornier HM-3: a cooperative study. World J Urol 5:218–224

    Article  Google Scholar 

  • Rassweiler J, Gumpinger R, Buh P, Kohl H, Mayer A, Eisenberger F (1989) Wolf Piezolith 2200 versus the modified Dornier HM3. Eur Urol 16:1–6

    Google Scholar 

  • Rassweiler J, Henkel T, Köhrmann K, Potempa D, Jünemann K, Alken P (1992) Lithotripter technology. Present and future. J Endourol 6:1–13

    Article  Google Scholar 

  • Rassweiler J, Renner C, Chaussy C, Thüroff S (2001) Treatment of renal stones by extracorporeal shock wave lithotripsy: an update. Eur Urol 39:187–199

    Article  Google Scholar 

  • Rassweiler J, Tailly GG, Chaussy C (2005) Progress in lithotriptor technology. EAU Updat Ser 3:17–36

    Article  Google Scholar 

  • Rassweiler J, Bergsdorf T, Bohris C, Burkhardt M, Burnes L, Forssmann B et al (2010) Consensus: shock wave technology and application—state of the art in 2010. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II: standards and recent developments. Thieme, Stuttgart, New York, pp 37–52

    Google Scholar 

  • Rassweiler J, Knoll T, Köhrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59:784–796

    Article  Google Scholar 

  • Rassweiler J, Fritsche HM, Tailly G, Klein J, Laguna P, Chaussy C (2012) Shock wave lithotripsy in the year 2012. In: Knoll T, Perale MS (eds) Clinical management of urolithiasis. Springer Verlag, Berlin, pp 51–75

    Google Scholar 

  • Rassweiler J, Rassweiler MC, Kenngott H, Frede T, Michel MS, Alken P, Clayman R (2013) The past, present and future of minimally invasive therapy in urology: a review and speculative outlook. Minim Invasive Ther Allied Technol 22:200–209

    Article  Google Scholar 

  • Rassweiler J, Rassweiler MC, Frede T, Alken P (2014) Extracorporeal shock wave lithotripsy: an opinion on its future. Indian J Urol 30:73–79

    Article  Google Scholar 

  • Rawat B, Fache JS, Burhenne HJ (1990) Biliary lithotripsy with the Siemens Lithostar Plus overhead module. J Lithotr Stone Dis 2:111–116

    Google Scholar 

  • Razvi H, Fuller A, Nott L, Méndez-Probst CE, Leistner R, Foell K, Davé S, Denstedt JD (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: a matched case-control analysis. J Endourol 26:1478–1482

    Article  Google Scholar 

  • Renner C, Rassweiler J (1999) Treatment of renal stones by extracorporeal shock wave lithotripsy. Nephron 81:71–81

    Article  Google Scholar 

  • Riad EM, Roshdy M, Ismail MAA, El-Leithy TR, Ghoubashy SE, Ganzoury HE, El Baz AG, Kamel AI (2009) Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) in the eradication of persistent bacteriuria associated with infected stones. Uro Today Int J 2(1). doi:10.3834/uij.1944-5784.2008.12.07.f3

  • Rieber F (1947) Shock wave generator. United States patent US2559227 A, 24 May 1947, Int Cl A61N7/02, G10K15/06, A61H23/00

    Google Scholar 

  • Riedlinger R, Dreyer T, Krauss W (2002) Small aperture piezo sources for lithotripsy. In: Bettucci A (ed) Proceedings of the 17th international congress on acoustics, vol IV, ICA, Rome, Italy, 2–7 Sept 2001

    Google Scholar 

  • Ringdén I, Tiselius HG (2007) Composition and clinically determined hardness of urinary tract stones. Scand J Urol Nephrol 41:316–323

    Article  Google Scholar 

  • Rink K, Delacrétaz G, Salathé RP (1992) Fragmentation process induced by microsecond laser pulses during lithotripsy. Appl Phys Lett 61:258–260

    Article  ADS  Google Scholar 

  • Rink K, Delacrétaz G, Salathé RP (1995) Fragmentation process of current laser lithotripters. Lasers Surg Med 16:134–146

    Article  Google Scholar 

  • Rodrigues Netto N, Lemos GC, Claro JF (1992) Extracorporeal shock wave lithotripsy with Lithostar lithotripter. Urology 40:430–434

    Article  Google Scholar 

  • Rodrigues Netto N, Longo JA, Ikonomidis JA, Rodrigues Netto M (2002) Extracorporeal shock wave lithotripsy in children. J Urol 167:2164–2166

    Article  Google Scholar 

  • Rogenhofer S, Wimmer K, Blana A, Roessler W, Wieland WF, Filbeck T (2004) Acupuncture for pain in extracorporeal shockwave lithotripsy. J Endourol 18:634–637

    Article  Google Scholar 

  • Roth RA, Beckmann CF (1988) Complications of extracorporeal shock wave lithotripsy and percutaneous lithotripsy. Urol Clin N Am 15:155–166

    Google Scholar 

  • Rubenstein JN, Parsons WG, Kim SC, Weiser AC, Loor MM, Kube DS, Nadler RB (2002) Extracorporeal shock wave lithotripsy of pancreatic duct stones using the Healthtronics LithoTron lithotriptor and the Dornier HM3 lithotripsy machine. J Urol 167:485–487

    Article  Google Scholar 

  • Ruoppolo M, Bellorofonte C, Tombolini P (1989) The Wolf Piezolith 2300 lithotriptor: a technical note. Arch Ital Urol Androl 61:373–378 (in Italian)

    Google Scholar 

  • Ryan PC, Jones BJ, Kay EW, Nowlan P, Kiely EA, Gaffney EF, Butler MR (1991) Acute and chronic bioeffects of single and multiple doses of piezoelectric shock waves (EDAP LT.01). J Urol 145:399–404

    Google Scholar 

  • Sackmann M (1992) Gallbladder stones: shock wave therapy. Baillieres Clin Gastroenterol 6:697–714

    Article  Google Scholar 

  • Sackmann M, Delius M, Sauerbruch T, Holl J, Weber W, Ippisch E, Hagelauer U, Wess O, Hepp W, Brendel W, Paumgartner G (1988) Shock-wave lithotripsy of gallbladder stones. The first 175 patients. N Engl J Med 318:393–397

    Article  Google Scholar 

  • Sackmann M, Eder H, Spengler U, Pauletzki J, Holl J, Paumgartner G, Sauerbruch T (1993) Gallbladder emptying is an important factor in fragment disappearance after shock wave lithotripsy. J Hepatol 17:62–66

    Article  Google Scholar 

  • Sackmann M, Holl J, Sauter GH, Pauletzki J, von Ritter C, Paumgartner G (2001) Extracorporeal shock wave lithotripsy for clearance of bile duct stones resistant to endoscopic extraction. Gastrointest Endosc 53:27–32

    Article  Google Scholar 

  • Saiko Y, Saito I (1994) Experience with Yachiyoda SZ-5000 extracorporeal shock wave lithotripsy. Hinyokika Kiyo 40:273–277 (in Japanese)

    Google Scholar 

  • Sankin GN, Zhou Y, Zhong P (2008) Focusing of shock waves induced by optical breakdown in water. J Acoust Soc Am 123:4071–4081

    Article  ADS  Google Scholar 

  • Sapozhnikov OA, Khokhlova VA, Bailey MR, Williams JC, McAteer JA, Cleveland RO, Crum LA (2002) Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am 112:1183–1195

    Article  ADS  Google Scholar 

  • Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121:1190–1202

    Article  ADS  Google Scholar 

  • Sarica K, Yencilek F (2008) Prevention of shockwave induced functional and morphological alterations: an overview. Arch Ital Urol Androl 80:27–33

    Google Scholar 

  • Sas DJ (2010) Increasing incidence of kidney stones in children evaluated in the emergency department. J Pediatr 157:132–137

    Article  Google Scholar 

  • Sato Y, Tanda H, Kato S, Ohnishi S, Nakajima H, Nanbu A, Nitta T, Koroku M, Akagashi K, Hanzawa T (2008) Shock wave lithotripsy for renal stones is not associated with hypertension and diabetes mellitus. Urology 71:586–591

    Article  Google Scholar 

  • Sauerbruch T, Stern M (1989) Study group for shock-wave lithotripsy of bile duct stones. Fragmentation of bile duct stones by extracorporeal shock waves. A new appraoch to biliary calculi after failure of routine endoscopic measures. Gastroenterology 96:146–152

    Article  Google Scholar 

  • Sauerbruch T, Delius M, Paumgartner G, Holl J, Wess O, Weber W, Hepp W, Brendel W (1986) Fragmentation of gallstones by extracorporeal shock waves. N Engl J Med 314:818–822

    Article  Google Scholar 

  • Sauerbruch T, Holl J, Sackmann M, Werner R, Wotzka R, Paumgartner G (1987) Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with chronic pancreatitis. Endoscopy 19:207–208

    Article  Google Scholar 

  • Sauerbruch T, Holl J, Sackmann M, Paumgartner G (1989) Extracorporeal shock wave lithotripsy of pancreatic stones. Gut Int J Gastroenterol Hepatol 30:1406–1411

    Google Scholar 

  • Saw KC, McAteer JA, Fineberg NS, Monga AG, Chua GT, Lingeman JE, Williams JC Jr (2000a) Calcium stone fragility is predicted by helical CT attenuation values. J Endourol 14:471–474

    Article  Google Scholar 

  • Saw KC, McAteer JA, Monga AG, Chua GT, Lingeman JE, Williams JC Jr (2000b) Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. Am J Roentgenol 175:329–332

    Article  Google Scholar 

  • Sayed MA, el-Taher AM, Aboul-Ella HA, Shaker SE (2001) Steinstrasse after extracorporeal shockwave lithotripsy: aetiology, prevention and management. Br J Urol Int 88:675–678

    Article  Google Scholar 

  • Scales CD, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62:160–165

    Article  Google Scholar 

  • Schelling G, Weber W, Mendl G, Braun H, Cullmann H (1996) Patient controlled analgesia for shock wave lithotripsy: the effect of self-administered alfentanil on pain intensity and drug requirement. J Urol 155:43–47

    Article  Google Scholar 

  • Schmitz S, Zengel P, Alvir I, Andratschke M, Berghaus A, Lang S (2008) Long-term evaluation of extracorporeal shock wave lithotripsy in the treatment of salivary stones. J Laryngol Otol 122:65–71

    Article  Google Scholar 

  • Schnabel MJ, Brummeisl W, Burger M, Rassweiler JJ, Knoll T, Neisius A, Chaussy CG, Fritsche HM (2015) Stosswellenlithotripsie in Deutschland: ergebnisse einer deutschlandweiten Umfrage. Der Urol 54:1277–1282 (in German)

    Article  Google Scholar 

  • Schoenfield LJ, Berci G, Carnovale RL, Casarella W, Caslowitz P, Chumley D, Davis RC, Gillenwater JY, Johnson AC, Jones RS, Jordan LG, Kafonek DR, Laufer I, Lillemoe KD, Lu S, Maglinte D, Maher JM, Malet PF, Malt RA, Marks JW, McCallum RW, Nahrwold DL, Nemcek A, Pambianco DJ, Pitt HA, Reinhold RB, Rosenthal A, Rothschild JG, Saba G, Schirmer BD, Steinberg HV, Summers RW, Torres WE (1990) The effect of ursodiol on the efficacy and safety of extracorporcal shock-wave lithotripsy of gallstones. The Dornier National Biliary Lithotripsy Study. N Engl J Med 323:1239–1245

    Article  Google Scholar 

  • Schulz-Lampel D, Lampel A (2001) The surgical management of stones in children. Br J Urol Int 87:732–740

    Article  Google Scholar 

  • Seitz C (2010) Medical expulsive therapy of ureteral calculi and supportive therapy after extracorporeal shock wave lithotripsy. Eur Urol Suppl 9:807–813

    Article  Google Scholar 

  • Seitz C, Fajkovic H, Waldert M, Tanovic E, Remzi M, Kramer G, Marberger M (2006) Extracorporeal shock wave lithotripsy in the treatment of proximal ureteral stones: does the presence and degree of hydronephrosis affect success? Eur Urol 49:378–383

    Article  Google Scholar 

  • Seitz C, Fritsche HM, Siebert T, Martini T, Wieland WF, Pycha A, Burger M (2009) Novel electromagnetic lithotriptor for upper tract stones with and without a ureteral stent. J Urol 182:1424–1429

    Article  Google Scholar 

  • Semins MJ, Matlaga BR (2010) Novel instrumentation in urologic surgery: shock wave lithotripsy. Indian J Urol 26:423–426

    Article  Google Scholar 

  • Semins MJ, Trock BJ, Matlaga BR (2008) The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 179:194–197

    Article  Google Scholar 

  • Seven G, Schreiner MA, Ross AS, Lin OS, Gluck M, Gan SI, Irani S, Brandabur JJ, Patterson D, Kuhr C, Kozarek R (2012) Long-term outcomes associated with pancreatic extracorporeal shock wave lithotripsy for chronic calcific pancreatitis. Gastrointest Endosc 75:997–1004

    Article  Google Scholar 

  • Shaffer EA (2006) Epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol 20:981–996

    Article  Google Scholar 

  • Shah K, Kurien A, Mishra S, Ganpule A, Muthu V, Sabnis RB, Desai M (2010a) Predicting effectiveness of extracorporeal shock wave lithotripsy by stone attenuation value. J Endourol 24:1169–1173

    Article  Google Scholar 

  • Shah A, Owen NR, Lu W, Cunitz BW, Kaczkowski PJ, Harper JD, Bailey MR, Crum LA (2010b) Novel ultrasound method to reposition kidney stones. Urol Res 38:491–495

    Article  Google Scholar 

  • Shah A, Harper JD, Cunitz BW, Wang YN, Paun M, Simon JC, Lu W, Kaczkowski PJ, Bailey MR (2012) Focused ultrasound to expel calculi from the kidney. J Urol 187:739–743

    Article  Google Scholar 

  • Sheir KZ, El-Sheikh AM, Ghoneim MA (2001) Synchronous twin-pulse technique to improve efficacy of SWL: preliminary results of an experimental study. J Endourol 15:965–974

    Article  Google Scholar 

  • Sheir KZ, Lee D, Humphrey PA, Morrissey K, Sundaram CP, Clayman RV (2003a) Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Urology 62:964–967

    Article  Google Scholar 

  • Sheir KZ, Madbouly K, Elsobky E (2003b) Prospective randomized comparative study of the effectiveness and safety of electrohydraulic and electromagnetic extracorporeal shock wave lithotriptors. J Urol 170:389–392

    Article  Google Scholar 

  • Sheir KZ, El-Diasty TA, Ismail AM (2005) Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. Br J Urol Int 95:389–393

    Article  Google Scholar 

  • Sheir KZ, Elhalwagy SM, Abo-Elghar ME, Ismail AM, Elsawy E, El-Diasty TA, Dawaba ME, Eraky IA, El-Kenawy MR (2007) Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: a prospective randomized study of effectiveness and safety in comparison to standard single-pulse technique. Br J Urol Int 101:1420–1426

    Article  Google Scholar 

  • Shen P, Jiang M, Yang J, Li X, Li Y, Wei W, Dai Y, Zeng H, Wang J (2011) Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: a systematic review and meta-analysis. J Urol 186:1328–1335

    Article  Google Scholar 

  • Shokeir AA, Sheir KZ, El-Nahas AR, El-Assmy AM, Eassa W, El-Kappany HA (2006) Treatment of renal stones in children: a comparison between percutaneous nephrolithotomy and shock wave lithotripsy. J Urol 176:706–710

    Article  Google Scholar 

  • Shouman AM, Ghoneim IA, ElShenoufy A, Ziada AM (2009) Safety of ungated shockwave lithotripsy in pediatric patients. J Pediatr Urol 5:119–121

    Article  Google Scholar 

  • Sighinolfi MC, Micali S, Grande M, Mofferdin A, De Stefani S, Bianchi G (2008) Extracorporeal shock wave lithotripsy in an elderly population: how to prevent complications and make the treatment safe and effective. J Endourol 22:2223–2226

    Article  Google Scholar 

  • Singh SK, Mandal A, Goswami A, Rajarajan V, Mete U, Sharma S (2004) Density of renal stone on computerized tomography: predictor of stone fragmentation by extracorporeal shockwave lithotripsy but not of chemical composition of stone. Br J Urol Int Suppl 2:9

    Google Scholar 

  • Skolarikos A, Alivizatos G, de la Rosette J (2006) Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol 50:981–990

    Article  Google Scholar 

  • Smith N, Zhong P (2012) Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. J Biomech 45:2520–2525

    Article  Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA (2000) Effect of dual-reflector lithotripter on stone fragmentation and cell damage. J Acoust Soc Am 108:2518, http://dx.doi.org/10.1121/1.4743312

  • Sokolov DL, Bailey MR, Crum LA (2001) Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 110:1685–1695

    Article  ADS  Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA, Blomgren PM, Connors BA, Evan AP (2002) Prefocal alignment improves stone comminution in shockwave lithotripsy. J Endourol 16:709–715

    Article  Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA (2003) Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med Biol 29:1045–1052

    Article  Google Scholar 

  • Sorensen C, Chandhoke P (2002) Is lower pole calyceal anatomy predictive of extracorporeal shock wave lithotripsy success for primary lower pole kidney stones? J Urol 168:2377–2382

    Article  Google Scholar 

  • Sorensen C, Chandhoke P, Moore M, Wolf C, Sarram A (2002) Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli lithotripter. J Urol 168:35–37

    Article  Google Scholar 

  • Sorensen MD, Bailey MR, Shah AR, His RS, Paun M, Harper JD (2012) Quantitative assessment of shock wave lithotripsy accuracy and the effect of respiratory motion. J Endourol 26:1070–1074

    Article  Google Scholar 

  • Sorensen MD, Bailey MR, Hsi RS, Cunit BW, Simon JC, Wang Y-N, Dunmire BL, Paun M, Starr F, Lu W, Evan AP, Harper JD (2013) Focused ultrasonic propulsion of kidney stones: review and update of preclinical technology. J Endourol 27:1183–1186

    Article  Google Scholar 

  • Springhart WP, Preminger GM (2004) Advanced imaging in stone management. Curr Opin Urol 14:95–98

    Article  Google Scholar 

  • Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823

    Article  Google Scholar 

  • Starr NT, Middleton RG (1992) Extracorporeal piezoelectric lithotripsy in unanesthetized children. Pediatrics 89:1226–1229

    Google Scholar 

  • Staudenraus J (1991) Erzeugung und Ausbreitung freifeldfokussierter Hochenergiedruckimpulse in Wasser. Dissertation, University of Stuttgart, Stuttgart. 173 p (in German)

    Google Scholar 

  • Steinberg PL, Williams S, Hoenig D (2010) Adjuncts to improve outcomes of shock wave lithotripsy. Curr Urol Rep 11:93–97

    Article  Google Scholar 

  • Stelmashuk V, Hoffer P (2012) Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities. IEEE Trans Plasma Sci 40:1907–1912

    Article  ADS  Google Scholar 

  • Stelmashuk V, Sunka P (2006) Mutual interaction of two shock waves with a different time delay. Czechoslov J Phys 56(Suppl 2):B396–B400

    Article  Google Scholar 

  • Stephenson TJ, Johnson AG, Ross B (1989) Short-term effects of extracorporeal shock wave lithotripsy on the human gallbladder. J Pathol 158:239–246

    Article  Google Scholar 

  • Stewart G, Johnson L, Ganesh H, Davenport D, Smelser W, Crispen P, Venkatesh R (2015) Stone size limits the use of Hounsfield units for prediction of calcium oxalate stone composition. Urology 85:292–295

    Article  Google Scholar 

  • Stoller ML, Bolton DM (2000) Urinary stone disease. In: Tanogho EA, McAninch JW (eds) Smith’s general urology, 15th edn. Lange Medical Books, San Francisco, pp 291–320

    Google Scholar 

  • Straub M, Geschwend J, Zorn C (2010) Pediatric urolithiasis: the current surgical management. Pediatr Nephrol 25:1239–1244

    Article  Google Scholar 

  • Sugihara T, Yasunaga H, Horiguchi H, Nishimatsu H, Hirano Y, Matsuda S, Homma Y (2012) Renal haemorrhage risk after extracorporeal shockwave lithotripsy: results from the Japanese Diagnosis Procedure Combination Database. Br J Urol Int 110:E332–E338

    Article  Google Scholar 

  • Sun X, He L, Lu J, Cong X, Shen L, Wang Y, Zhu H (2010) Greater and lesser ischiadic foramina as path of shock wave lithotripsy for distal ureteral stone in children. J Urol 184:665–668

    Article  Google Scholar 

  • Sunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8:2587–2594

    Article  ADS  Google Scholar 

  • Sunka P, Stelmashuk V, Babicky V, Clupek M, Benes J, Pouckova P, Kaspar J, Bodnar M (2006) Generation of two successive shock waves focused to a common focal point. IEEE Trans Plasma Sci 34:1382–1385

    Article  ADS  Google Scholar 

  • Suzuki Y, Sugiyama M, Inui K, Igarashi Y, Ohara H, Tazuma S, Tsuji T, Miyakawa H, Atomi Y (2013) Management for pancreatolithiasis: a Japanese multicenter study. Pancreas 42:584–588

    Article  Google Scholar 

  • Tadenuma H, Ishihara T, Yamaguchi T, Tsuchiya S, Kobayashi A, Nakamura K, Sakurada R, Saisho H (2005) Long-term results of extracorporeal shockwave lithotripsy and endoscopic therapy for pancreatic stones. Clin Gastroenterol Hepatol 3:1128–1135

    Article  Google Scholar 

  • Tailly GG (1989) Experience with a Dornier HM4 lithotripter in urinary stone treatment. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy 2: urinary and biliary lithotripsy, part VI. Springer Science and Business Media, New York, pp 421–426

    Chapter  Google Scholar 

  • Tailly GG (1990) Experience with the Dornier HM4 and the MPL 9000 lithotriptors in urinary stone treatment. J Urol 144:622–627

    Google Scholar 

  • Tailly GG (1999) Consecutive experience with 4 Dornier lithotripters: HM4, MPL9000, Compact, and U/50. J Endourol 13:329–338

    Article  Google Scholar 

  • Tailly GG (2010) Introduction to lithotripter technology. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 47–80

    Google Scholar 

  • Tailly GG (2012) Lithotripsy systems. In: Smith AD, Badlani G, Preminger G, Kavousi LR (eds) Smith’s textbook of endourology, 3rd edn. Wiley-Blackwell, New Jersey, pp 559–575

    Chapter  Google Scholar 

  • Tailly GG (2013a) Extracorporeal shock wave lithotripsy today. Indian J Urol 29:200–207

    Article  Google Scholar 

  • Tailly GG (2013b) Optical coupling control in extracorporeal shock wave lithotripsy. J Endourol 27(Suppl 1):A130

    Google Scholar 

  • Tailly GG, Tailly-Cusse MM (2014) Optical coupling control: an important step toward better shockwave lithotripsy. J Endourol 28:1368–1373

    Article  Google Scholar 

  • Tailly GG, Marcelo JB, Schneider IA, Byttebier G, Daems K (2001) Patient-controlled analgesia during SWL treatments. J Endourol 15:465–471

    Article  Google Scholar 

  • Tailly GG, Baert JA, Hente KR, Tailly TO (2008) Twenty years of single center experience in ESWL 1987-2007: an evaluation of 3079 patients. J Endourol 22:2211–2222

    Article  Google Scholar 

  • Takayama K (1993) Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy. Jpn J Appl Phys 32:2192–2198

    Article  ADS  Google Scholar 

  • Tan EC, Tung KH, Foo KT (1991) Comparative studies of extracorporeal shock wave lithotripsy by Dornier HM3, EDAP LT 01 and Sonolith 2000 devices. J Urol 148:294–297

    Google Scholar 

  • Tan AH, Al-Omar M, Watterson JD, Nott L, Denstedt JD, Razvi H (2004) Results of shock wave lithotripsy for pediatric urolithiasis. J Endourol 18:527–530

    Article  Google Scholar 

  • Tandan M, Reddy DN (2011) Extracorporeal shock wave lithotripsy for pancreatic and large common bile duct stones. World J Gastroenterol 17:4365–4371

    Article  Google Scholar 

  • Tandan M, Reddy DN, Santosh D, Vinod K, Ramchandani M, Rajesh G, Rama K, Lakhtakia S, Banerjee R, Pratap N, Rao GV (2010) Extracorporeal shock wave lithotripsy and endotherapy for pancreatic calculi—a large single center experience. Indian J Gastroenterol 29:143–148

    Article  Google Scholar 

  • Tandan M, Reddy DN, Talukdar R, Vinod K, Santosh D, Lakhtakia S, Gupta R, Ramchandani MJ, Banerjee R, Rakesh K, Varadaraj G, Rao GV (2013) Long-term clinical outcomes of extracorporeal shockwave lithotripsy in painful chronic calcific pancreatitis. Gastrointest Endosc 78:726–733

    Article  Google Scholar 

  • Tanguay M, Colonius T (2003) Progress in modeling and simulation of shock wave lithotripsy (SWL). In: Proceedings of the CAV2003. Fifth international symposium on cavitation. New utilization of cavitation in biomedical, environment and material processing fields. Osaka University, Osaka, Japan, OS-2-1-010, 1–4 Nov 2003

    Google Scholar 

  • Tavakkoli J, Birer A, Arefiev A, Prat F, Chapelon JY, Cathignol D (1997) A piezocomposite shock wave generator with electronic focusing capability: application for producing cavitation-induced lesions in rabbit liver. Ultrasound Med Biol 23:107–115

    Article  Google Scholar 

  • Teichman JMH, Portis AJ, Cecconi PP, Bub WL, Endicott RC, Denes B, Pearle MS, Clayman RV (2000) In vitro comparison of shock wave lithotripsy machines. J Urol 164:1259–1264

    Article  Google Scholar 

  • Thoma C (2014) Bursting through limitations of SWL. Nat Rev Urol 11:540

    Google Scholar 

  • Thomas R, Cass AS (1993) Extracorporeal shock wave lithotripsy in morbidly obese patients. J Urol 150:30–32

    Google Scholar 

  • Thomas VM, Sosa RE (1998) Shock wave lithotripsy. In: Wlash PC, Retik AB, Vaughn ED (eds) Campbell´s urology, 7th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Thomas R, Roberts J, Sloane B, Kaack B (1988) Effect of extracorporeal shock wave lithotripsy on renal function. J Endourol 2:141–144

    Article  Google Scholar 

  • Thomas R, Cherry R, Neal DW (1991) The use of extracorporeal shock wave lithotripsy in patients with aortic aneurysms. J Urol 146:409–410

    Google Scholar 

  • Thomas JL, Wu F, Fink M (1996) Time reversal focusing applied to lithotripsy. Ultrason Imaging 18:106–121

    Article  Google Scholar 

  • Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy with modern lithotripters for removal of ureteral stones? J Endourol 22:249–255

    Article  Google Scholar 

  • Tiselius HG (ed) (2013a) Urology. Level10 Buchverlag, Heilbronn (Shock wave therapy in practice)

    Google Scholar 

  • Tiselius HG (2013b) SWL: factors of importance for optimizing SWL of urinary tract concrements. In: Tiselius HG (ed) Urology. Level10 Buchverlag, Heilbronn, pp 40–72 (Shock wave therapy in practice)

    Google Scholar 

  • Tiselius HG, Chaussy CG (2012) Aspects on how extracorporeal shockwave lithotripsy should be carried out in order to be maximally effective. Urol Res 40:433–446

    Article  Google Scholar 

  • Tiselius HG, Hellgren E, Andersson A, Borrud-Ohlsson A, Eriksson I (1999) Minimally invasive treatment of infection staghorn stones with shock wave lithotripsy and chemolysis. Scand J Urol Nephrol 33:286–290

    Article  Google Scholar 

  • Tiselius HG, Aronsen T, Bohgard S, Fredriksson M, Jonason EM, Olsson M, Sjöström K (2010) Is high diuresis an important prerequisite for successful SWL-disintegration of ureteral stones? Urol Res 38:143–146

    Article  Google Scholar 

  • Tligui M, El Khadime MR, Tchala K, Haab F, Traxer O, Gattegno B, Thibault P (2003) Emergency extracorporeal shock wave lithotripsy (ESWL) for obstructing ureteral stones. Eur Urol 43:552–555

    Article  Google Scholar 

  • Tolley DA, Wallace DMA, Tiptaft RC (1991) First UK consensus conference on lithotriptor terminology. Br J Urol 67:9–12

    Article  Google Scholar 

  • Tombal B, Mawlawi H, Feyaerts A, Wese FX, Opsomer R, Van Cangh PJ (2005) Prospective randomized evaluation of emergency extracorporeal shock wave lithotripsy (ESWL) on the short-time outcome of symptomatic ureteral stones. Eur Urol 47:855–859

    Article  Google Scholar 

  • Tombolini P, Ruoppolo M, Bellorofonte C, Tura M, Zaatar C, Ferri PM, Morosini D, Dell'Acqua S (1989) The Wolf Piezolith 2300: lights and shadows. Arch Ital Urol Androl 61:379–391 (in Italian)

    Google Scholar 

  • Tombolini P, Ruoppolo M, Bellorofonte C, Zaatar C, Follini M (2000) Lithotripsy in the treatment of urinary lithiasis. J Nephrol 13:S71–S82

    Google Scholar 

  • Tran TY, McGillen K, Cone EB, Pareek G (2015) Triple D score is a reportable predictor of shockwave lithotripsy stone-free rates. J Endourol 29:226–230

    Article  Google Scholar 

  • Tuncer M, Erdogan BA, Yazici O, Sahin C, Altin G, Faydaci G, Eryildirim B, Sarica K (2014) Does extracorporeal shock wave lithotripsy cause hearing impairment? Urology 84:12–15

    Article  Google Scholar 

  • Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, Seitz C (2015) Guidelines on urolithiasis. European Association of Urology, Arnhem, Nethetlands

    Google Scholar 

  • Turney BW, Reynard JM, Nobble JG, Keoghane SR (2011) Trends in urological stone disease. Br J Urol Int 109:1082–1087

    Article  Google Scholar 

  • Vakalopoulos I (2009) Development of a mathematical model to predict extracorporeal shockwave lithotripsy outcome. J Endourol 23:891–897

    Article  Google Scholar 

  • Vallancien G, Aviles J, Munoz R, Veillon B, Charton M, Brisset JM (1988) Piezoelectric extracorporeal lithotripsy by ultrashort waves with the EDAP LT01 device. J Urol 139:689–694

    Google Scholar 

  • van Cauwelaert J (2004) Use of micro-computed tomography to follow the progression of crack formation in artificial and human stones during shock wave lithotripsy. Master’s Thesis, Boston University, Boston MA, 164 p

    Google Scholar 

  • van der Hul R, Plaisier P, den Room R, van Blankenstein M, Terpstra OT, Jeekel J (1993) Schokgolfvergruising van steenen in het pancreas; de eerste 16 in Rotterdam- Dijkzigt behandelde patienten. Ned Tijdschr Geneeskd 137:763–766 (in Dutch)

    Google Scholar 

  • van der Hul R, Plaisier P, Jeekel J, Terpstra O, den Toom R, Bruining H (1994) Extracorporeal shockwave lithotripsy of pancreatic duct stones: immediate and long-term results. Endoscopy 26:573–578

    Article  Google Scholar 

  • Vandeursen H, DeRidder D, Pittomvils G, Demeulenaere R, Herremans D, Boving R, Baert L (1993) High pressure versus low pressure electromagnetic extracorporeal lithotripsy. J Urol 149:988–991

    Google Scholar 

  • Vassolas G, Roth RA, Venditti FJ (1993) Effect of extracorporeal shock wave lithotripsy on implantable cardioverter defibrillator. Pacing Clin Electrophysiol 16:1245–1258

    Article  Google Scholar 

  • Venditti FJ, Martin D, Long AL, Roth RA (1991) Renal extracorporeal shock wave lithotripsy performed in patient with implantable cardioverter defibrillator. Pacing Clin Electrophysiol 14:1323–1325

    Article  Google Scholar 

  • Venneman NG, van Berge-Henegouwen GP, Portincasa P, Stolk MF, Vos A, Plaisier PW, van Erpecum KJ (2001) Absence of apolipoprotein E4 genotype, good gallbladder motility and presence of solitary stones delay rather than prevent gallstone recurrence after extracorporeal shock wave lithotripsy. J Hepatol 35:10–16

    Article  Google Scholar 

  • Vergunst H, Terpstra OT, Brakel K, Laméris JS, van Blankenstein M, Schröder FH (1989) Extracorporeal shockwave lithotripsy of gallstones: possibilities and limitations. Ann Surg 210:565–575

    Article  Google Scholar 

  • Vergunst H, Terpstra OT, Schröder FH, Matura E (1990) In vivo assessment of shockwave pressures: implication for biliary lithotripsy. Gastroenterology 99:1467–1474

    Google Scholar 

  • Vergunst H, Brakel K, Nijs HGT, Matura E, Drexler J, Steen G, Schröder FH, Terpstra OT (1993a) Electromagnetic shock wave lithotripsy of gallstones in vitro: the role of different stone characteristics and treatment variables. J Lithotr Stone Dis 5:105–112

    Google Scholar 

  • Vergunst H, Terpstra OT, Brakel K, Nijs HG, Laméris JS, ten Kate FJ, Schröder FH (1993b) Biliary extracorporeal shockwave lithotripsy: short-term and long-term observations in an animal model. Hepatogastroenterology 40:388–395

    Google Scholar 

  • Vergunst H, Brakel K, Nijs HG, Laméris JS, Ten Kate FJ, Schröder FH, Terpstra OT (1994) Methyl tert-butyl ether improves the efficacy of extracorporeal shock wave lithotripsy of human gallstones implanted in pigs. Eur J Surg 160:619–625

    Google Scholar 

  • Vicentini FC, Mazzucchi E, Brito AH, Chedid Neto EA, Danilovic A, Srougi M (2011) Adjuvant tamsulosin or nifedipine after extracorporeal shock wave lithotripsy for renal stones: a double blind, randomized, placebo-controlled trial. Urology 78:1016–1021

    Article  Google Scholar 

  • Villányi KK, Székely JG, Farkas LM, Jávor É, Pusztai C (2001) Short-term changes in renal function after extracorporeal shock wave lithotripsy in children. J Urol 166:222–224

    Article  Google Scholar 

  • Vivaldi B, Fernández MI, López JF, Fuentes F, Urzúa C, Krebs A, Domenech A, Figueroa PA, Pizzi P, Westendarp M, Zambrano N, Castro M, Coz LF (2011) Single-session extracorporeal shock wave lithotripsy for urinary calculi: factors predicting success after three weeks of follow-up. Actas Urol Esp 35:529–533 (in Spanish)

    Google Scholar 

  • Vogel A (1997) Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys Med Biol 42:895–912

    Article  Google Scholar 

  • Vogel A, Lauterborn W (1988) Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J Acoust Soc Am 84:719–731

    Article  ADS  Google Scholar 

  • Vogel A, Busch S, Parlitz U (1996a) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100:148–165

    Article  ADS  Google Scholar 

  • Vogel A, Nahen K, Theisen D, Noack J (1996b) Plasma formation in water by picosecond and nanosecond Nd:YAC laser pulses. Part I: optical breakdown at threshold and superthreshold irradiance. IEEE J Sel Top Quantum Electron 2:847–860

    Article  Google Scholar 

  • Wadhwa P (2011) Shock wave lithotripsy for urolithiasis: where do we stand today? J Int Med Sci Acad 24:111–113

    Google Scholar 

  • Wadhwa P, Aron M, Seth A, Dogra PN, Hemal AK, Gupta NP (2007) Pediatric shock wave lithotripsy: size matters. J Endourol 21:141–144

    Article  Google Scholar 

  • Wang JC, Zhou Y (2016) Shifting the split reflectors to enhance stone fragmentation of shock wave lithotripsy. Ultrasound Med Biol 42:1876–1889

    Article  Google Scholar 

  • Wang YH, Grenabo L, Hedelin H, Pettersson S, Wikholm G, Zachrisson F (1993) Analysis of stone fragility in vitro and in vivo with piezoelectric shock waves using the EDAP LT-01. J Urol 149:699–702

    Google Scholar 

  • Wang SC, Chang SY, Feng SP (1994) Initial observation of alleviation effects induced by acupuncture to relieve pain from extracorporeal shock wave lithotripsy (ESWL). Chin J Anesthesiol 14:381–382

    Google Scholar 

  • Wang R, Faerber GJ, Roberts WW, Morris DS, Wolf JS Jr (2009a) Single-center North American experience with Wolf Piezolith 3000 in management of urinary calculi. Urology 73:958–963

    Article  Google Scholar 

  • Weizer AZ, Zhong P, Preminger GM (2007) New concepts in shock wave lithotripsy. Urol Clin N Am 34:375–382

    Article  Google Scholar 

  • Wenzel H, Greiner L, Jakobeit CH, Lazica M, Thüroff J (1989) Extrakorporale Stosswellenlithotripsie von Gallengangsteinen. Dtsch Med Wochenschr 114:738–743 (in German)

    Article  Google Scholar 

  • Wese S, Opsomer RJ, Feyaerts A, Van Cangh PJ, Wese FX (2003) Extracorporeal shock-wave lithotripsy in children. J Endourol 17(Suppl):1

    Google Scholar 

  • Wess O (2010) Storz Medical: shock wave technology for medical applications. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU (eds) Therapeutic energy applications in urology II: standards and recent developments. Thieme, Stuttgart, pp 78–81

    Google Scholar 

  • Wess O (2012) Physics and technique of shock wave lithotripsy (SWL). In: Talati J, Tiselius HG, Albala DM, Ye Z (eds) Urolithiasis. Basic science and clinical practice. Springer Verlag, London, pp 301–311. doi:10.1007/978-1-4471-4387-1_38

    Google Scholar 

  • Wess OJ, Marlinghaus EH, Katona J (1990) A new design of an optimal acoustic source for extracorporeal lithotripsy. In: Burhenne J (ed), Billiary lithotripsy II: adapted from the proceedings of the second international inter-disciplinary symposium on biliary lithotripsy, Year Book Medical Publishers, Chicago, pp 211–214, 24–26 Apr 1989

    Google Scholar 

  • Wess OJ, Stojan L, Rachel UK (1995) Untersuchungen zur Präzision der Ultraschallortung in vivo am Beispiel der extrakorporal induzierten Lithotripsie. In: Chaussy C, Eisenberger F, Jocham D (eds) Die Stosswelle, Forschung und Klinik. Atempto Verlag, Tübingen, pp 37–44 (in German)

    Google Scholar 

  • Westermark S, Nelson E, Kinn AC, Wiksell H (1998) Effect of concentration of dissolved gases in the coupling media on focal pressure in ESWL treatment. Phys Med 14:51–53

    Google Scholar 

  • Whelan JP, Finlayson B, Welch J, Newman RC (1988) The blast path: theoretical basis, experimental data and clinical application. J Urol 140:401–404

    Google Scholar 

  • Wiesenthal JD, Ghiculete D, D’A Honey RJ, Pace KT (2010) Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res 38:307–313

    Article  Google Scholar 

  • Wiesenthal JD, Ghiculete D, Ray AA, D’A Honey RJ, Pace KT (2011) A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol 186:556–562

    Article  Google Scholar 

  • Wilbert DM, Reichenberger H, Noske B, Riedmiller H, Alken P, Hohenfellner R (1987) New generation shock wave lithotripsy. J Urol 138:563–565

    Google Scholar 

  • Williams JC Jr, Zarse CA, Jackson ME, Lingeman JE, McAteer JA (2007) Using helical CT to predict stone fragility in shock wave lithotripsy (SWL). In: Evan AP, Lingeman JE, Williams JC Jr (eds) Renal stone disease: proceedings of the first international urolithiasis research symposium, AIP Conference Proceedings, Indianapolis, IN, 2–3 Nov 2006. http://dx.doi.org/10.1063/1.2723592

  • Williams JC Jr, Paterson RF, Kopecky KK, Lingeman JE, McAteer JA (2001) High resolution detection of internal structure of renal calculi by helical computerized tomography. J Urol 167:322–326

    Article  Google Scholar 

  • Williams JC Jr, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE (2003) Variability of renal stone fragility in shock wave lithotripsy. Urology 61:1092–1096

    Article  Google Scholar 

  • Williams JC Jr, Kim SC, Zarse CA, McAteer JA, Lingeman JE (2004) Progress in the use of helical CT for imaging urinary calculi. J Endourol 18:937–941

    Article  Google Scholar 

  • Willis LR, Evan AP, Connors BA, Fineberg NS, Lingeman JE (1996) Effects of extracorporeal shock wave lithotripsy to one kidney on bilateral glomerular filtration rate and PAH clearance in minipigs. J Urol 156:1502–1506

    Article  Google Scholar 

  • Willis LR, Evan AP, Connors BA, Shao Y, Blomgren P, Pratt JH, Fineberg NS, Lingeman JE (2005) Shockwave lithotripsy: dose related effects on renal structure, hemodynemics and tubular function. J Endourol 19:90–101

    Article  Google Scholar 

  • Willis LR, Evan AP, Connors BA, Handa RK, Blomgren PM, Lingeman JE (2006) Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J Am Soc Nephrol 17:663–673

    Article  Google Scholar 

  • Wilson WT, Preminger GM (1990) Extracorporeal shock wave lithotripsy: an update. Urol Clin N Am 17:231–242

    Google Scholar 

  • Xi XF, Zhong P (2000) Improvement of stone fragmentation during shock wave lithotripsy using a combined EH/PEAA shock-wave generator—in vitro experiments. Ultrasound Med Biol 26:457–467

    Article  Google Scholar 

  • Yilmaz E, Batislam E (2010) Two different current topics during shock wave lithotripsy: frequency and analgesia. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 101–118

    Google Scholar 

  • Zarse CA, McAteer JA, Sommer AJ, Kim SC, Hatt EK, Lingeman JE, Evan AP, Williams JC Jr (2004a) Nondestructive analysis of urinary calculi using micro computed tomography. Biomed Cent Urol 4:15–22

    Google Scholar 

  • Zarse CA, McAteer JA, Tann M, Sommer AJ, Kim SC, Paterson RF, Hatt EK, Lingeman JE, Evan AP, Williams JC Jr (2004b) Helical CT accurately reports urinary stone composition using attenuation values: in vitro verification using high resolution micro CT calibrated to FT-IR microspectroscopy. Urology 63:828–833

    Article  Google Scholar 

  • Zarse CA, Hameed TA, Jackson ME, Pishchalnikov YA, Lingeman JE, McAteer JA, Williams JC Jr (2007) CT visible internal stone structure––but not Hounsfield unit value––of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res 35:201–206

    Article  Google Scholar 

  • Zehnder P, Roth B, Birkhäuser F, Schneider S, Schmutz R, Thalmann GN, Studer UE (2011) A prospective randomized trial comparing the modified HM3 with the Modulith SLX-F2 lithotripter. Eur Urol 59:637–644

    Article  Google Scholar 

  • Zenk J, Bozzato A, Winter M, Gottwald F, Iro H (2004) Extracorporeal shock wave lithotripsy of submandibular stones: evaluation after 10 years. Ann Otol Rhinol Laryngol 113:378–383

    Article  Google Scholar 

  • Zenk J, Koch M, Schapher M, Iro H (2014) Otorhinolaryngology. Shock wave lithotripsy in sialolithiasis therapy: state of the art. In: Lohrer H, Gerdesmeyer L (eds) Multidisciplinary medical applications. Level10 Buchverlag, Heilbronn, pp 276–301 (Shock wave therapy in practice)

    Google Scholar 

  • Zhong P, Preminger GM (1994) Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol 8:263–268

    Article  Google Scholar 

  • Zhong P, Zhou Y (2001) Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. J Acoust Soc Am 110:3283–3291

    Article  ADS  Google Scholar 

  • Zhong P, Cocks FR, Cioanta I, Preminger GM (1997b) Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shockwave lithotripsy. J Urol 158:2323–2328

    Article  Google Scholar 

  • Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM (1998b) Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol 12:371–378

    Article  Google Scholar 

  • Zhong P, Xi X, Zhu S, Cocks FH, Preminger GM (1999b) Recent development in SWL physics research. J Endourol 13:611–617

    Article  Google Scholar 

  • Zhong P, Smith N, Simmons NW, Sankin G (2011) A new acoustic lens design for electromagnetic shock wave lithotripters. Am Inst Phys Conf Proc 1359:42–47

    ADS  Google Scholar 

  • Zhou Y, Zhong P (2003) Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry. J Acoust Soc Am 113:586–597

    Article  ADS  Google Scholar 

  • Zhou Y, Zhong P (2006) The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter. J Acoust Soc Am 119:3625–3636

    Article  ADS  Google Scholar 

  • Zhou Y, Cocks FH, Preminger GM, Zhong P (2004a) The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 172:349–354

    Article  Google Scholar 

  • Zhou Y, Cocks FR, Prerninger GM, Zhong P (2004b) Innovations in shock wave lithotripsy technology: updates in experimental studies. J Urol 172:1892–1898

    Article  Google Scholar 

  • Zhu SL, Zhong P (1999) Shock wave-inertial microbubble interaction: a theoretical study based on the Gilmore formulation for bubble dynamics. J Acoust Soc Am 106:3024–3033

    Article  ADS  Google Scholar 

  • Zhu SL, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671

    Article  Google Scholar 

  • Zilberman DE, Ferrandino MN, Preminger GM, Paulson EK, Lipkin ME, Boll DT (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184:2354–2359

    Article  Google Scholar 

  • Zommick J, Leveillee R, Zabbo A, Colasanto L, Barrette D (1996) Comparison of general anesthesia and intravenous sedation-analgesia for SWL. J Endourol 10:489–491

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Loske, A.M. (2017). Shock Wave Lithotripsy. In: Medical and Biomedical Applications of Shock Waves. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-47570-7_5

Download citation

Publish with us

Policies and ethics