Skip to main content

Shock Waves as Used in Biomedical Applications

  • Chapter
  • First Online:
Medical and Biomedical Applications of Shock Waves

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Basic textbooks generally describe shock waves produced by supersonic aircraft. This might be confusing to scientists from non-physical areas, because the relationship to clinical shock waves is not obvious. Other literature on shock waves frequently is specialized and written for readers with a solid background in physics. In this chapter, basic information on shock waves as used in biomedical applications is given. A main goal is to avoid confusions in regard to common definitions. Concepts such as peak-positive and peak-negative pressure, rise time, pulse duration, energy flux density, as well as different definitions of focal zones are explained. Emphasis is given on the fact that even if the physical parameters defined in this chapter may be useful to evaluate the output of pressure wave sources; there is still a debate on their correlation to therapy efficiency and biological effects. The differences between lithotripter shock waves and radial pressure waves, as used in orthopedics, traumatology, and other clinical applications, are also explained. This is specially important, because their modes of action and effects on living tissue may differ. Finally, a few systems to record pressure waveforms and cavitation events, such as polyvinylidene difluoride and fiber-optic hydrophones, as well as schlieren photography combined with photoelastic stress imaging, and passive cavitation detection, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey MR (The University of Texas at Austin, Austin, Texas and Defense Technical Information Center) (1997) Control of acoustic cavitation with application to lithotripsy. Final report. Applied Research Laboratories Report No: ARL-TR-97-1

    Google Scholar 

  • Bailey MR, Pishchalnikov YA, Sapozhnikov OA, Cleveland RO, McAteer JA, Miller NA, Pishchalnikova IV, Connors BA, Crum LA, Evan AP (2005) Cavitation detection during shock wave lithotripsy. Ultrasound Med Biol 31:1245–1256

    Article  Google Scholar 

  • Bannuru RR, Flavin NE, Vaysbrot E, Harvey W, McAlindon T (2014) High-energy extracorporeal shock-wave therapy for treating chronic calcific tendinitis of the shoulder. Ann Intern Med 160:542–549

    Article  Google Scholar 

  • Cacchio A, Paoloni M, Barile A, Don R, de Paulis F, Calvisi V, Ranavolo A, Frascarelli M, Santilli V, Spacca G (2006) Effectiveness of radial shock-wave therapy for calcific tendinitis of the shoulder: single-blind, randomized clinical study. Phys Ther 86:672–682

    Google Scholar 

  • Canaparo R, Serpe L, Catalano MG, Bosco O, Zara GP, Berta L, Frairia R (2006) High energy shock waves (HESW) for sonodynamic therapy: effects on HT-29 human colon cancer cells. Anticancer Res 26:3337–3342

    Google Scholar 

  • Carnell MT, Emmony DC (1995a) A schlieren study of the interaction between a lithotripter shock wave and a simulated kidney stone. Ultrasound Med Biol 21:721–724

    Article  Google Scholar 

  • Carnell MT, Emmony DC (1995b) Optical distortion in the field of a lithotripter shock wave. Appl Opt 28:6465–6470

    Article  ADS  Google Scholar 

  • Chitnis PV (2002) Characterization and comparative analysis of extracorporeal shock wave devices. Master’s Thesis, College of Engineering, Boston University, Boston, p 108

    Google Scholar 

  • Chitnis PV, Cleveland RO (2006) Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave. J Acoust Soc Am 119:1929–1932

    Article  ADS  Google Scholar 

  • Chow IHW, Cheing GLY (2007) Comparison of different energy densities of extracorporeal shock wave therapy (ESWT) for the management of chronic heel pain. Clin Rehabil 21:131–141

    Article  Google Scholar 

  • Church CC (1989) A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am 86:215–227

    Article  ADS  Google Scholar 

  • Cleveland RO, McAteer JA (2007) The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 317–332

    Google Scholar 

  • Cleveland RO, Sapozhnikov OA, Bailey MR, Crum LA (2000b) A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. J Acoust Soc Am 107:1745–1758

    Article  ADS  Google Scholar 

  • Cleveland RO, Chitnis PV, McClure SR (2007) Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol 33:1327–1335

    Article  Google Scholar 

  • Coleman AJ, Saunders JE (1989) A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med Biol 15:213–227

    Article  Google Scholar 

  • Coleman AJ, Choi MJ, Saunders JE (1996) Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol 22:1079–1087

    Article  Google Scholar 

  • Collin JRT, Coussios CC (2011) Quantitative observations of cavitation activity in a viscoelastic medium. J Acoust Soc Am 130:3289–3296

    Article  ADS  Google Scholar 

  • Cunningham KB, Coleman AJ, Leighton TG, White PR (2001) Characterising in vivo acoustic cavitation during lithotripsy with time-frequency methods. Acoust Aust 26(5):10–16

    Google Scholar 

  • DelacrĂ©taz G, Rink K, Pittomvils G, Lafaut JP, Vandeursen H, Boving R (1995) Importance of the implosion of ESWL-induced cavitation bubbles. Ultrasound Med Biol 21:97–103

    Article  Google Scholar 

  • Dreisilker U (ed) (2010a) Enthesiopathien. Level10 Buchverlag, Heilbronn, 135 p, (in German)

    Google Scholar 

  • Eisenmenger W, Staudenraus J (1991) Sampling hydrophone. United States Patent US5010248 A, Int. Cl. A61B8/12, 23 Apr 1991

    Google Scholar 

  • Eliasson V (2007) On focusing of shock waves. Dissertation. Royal Institute of Technology, Stockholm, Sweden, 84 p

    Google Scholar 

  • Etienne J, Filipczynski L, Kujawska T, Zienkiewicz B (1997) Electromagnetic hydrophone for pressure determination of shock wave pulses. Ultrasound Med Biol 23:747–754

    Article  Google Scholar 

  • Filipczynsky L (1969) Absolute measurements of particle velocity, displacement or intensity of ultrasonic pulses in liquids and solids. Acustica 21:173–180

    Google Scholar 

  • Filipczynsky L, Etienne J (1990) Capacitance hydrophones for pressure determination in lithotripsy. Ultrasound Med Biol 16:157–165

    Article  Google Scholar 

  • Folberth W, Köhler G, Rohwedder A, Matura E (1992) Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources. J Lithotr Stone Dis 4:1–7

    Google Scholar 

  • Frairia R, Catalano MG, Fortunati N, Fazzari A, Raineri M, Berta L (2003) High energy shock waves (HESW) enhance paclitaxel cytotoxicity in MCF-7 cells. Breast Cancer Res Treat 81:11–19

    Article  Google Scholar 

  • Gamarra F, Spelsberg F, Dellian M, Goetz AE (1993a) Complete local tumor remission after therapy with extra-corporeally applied high-energy shock waves (HESW). Int J Cancer 55:153–156

    Article  Google Scholar 

  • Gamarra F, Spelsberg F, Kuhnle GEH, Goetz AE (1993b) High-energy shock waves induce blood flow reduction in tumors. Cancer Res 53:1590–1595

    Google Scholar 

  • Ginter S, Liebler M, Steiger E, Dreyer T, Riedlinger RE (2002) Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids. J Acoust Soc Am 111:2049–2059

    Article  ADS  Google Scholar 

  • Granz B (1989) PVDF hydrophone for the measurement of shock waves. IEEE Trans Electr Insul 24:499–502

    Article  Google Scholar 

  • Granz P, Köhler D (1992) What makes shock waves efficient in lithotripsy? J Lithotr Stone Dis 4:123–128

    Google Scholar 

  • Granz B, Nanke R, Fehre J, Pfister T, Engelbrecht R (2004) Light spot hydrophone, innovation in lithotripsy. Med Solut 6:86–87

    Google Scholar 

  • Hamilton MF, Blackstock DT (1997) Nonlinear acoustics: theory and application. Academic, San Diego

    Google Scholar 

  • Hosseini SHR, Takayama K (2004) Study of micro shock waves and cavitation generated by Ho: YAG laser beam for medical application. In: Behnia M, Lin W, McBain GD (eds) Proceedings of the 15th Australasian fluid mechanics conference, University of Sydney, Sydney, Australia, 13–17 Dec 2003

    Google Scholar 

  • Huber P, Debus J, Peschke P, Hahn EW, Lorenz WJ (1994) In vivo detection of ultrasonically induced cavitation by a fibre-optic technique. Ultrasound Med Biol 20:811–825

    Article  Google Scholar 

  • Huber P, Debus J, Jöchle K, Simiantonakis I, Jenne J, Rastert R, Spoo J, Lorenz WJ, Wannenmacher M (1999a) Control of cavitation activity by different shockwave pulsing regimes. Phys Med Biol 44:1427–1437

    Article  Google Scholar 

  • Hunter PT, Finlayson B, Hirko RJ, Voreck WC, Walker R, Walck S, Nasr M (1986) Measurement of shock wave pressures used for lithotripsy. J Urol 136:733–738

    Google Scholar 

  • Jöchle K, Debus J, Lorenz WJ, Huber P (1996) A new method of quantitative cavitation assessment in the field of a lithotripter. Ultrasound Med Biol 22:329–338

    Article  Google Scholar 

  • Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shock wave lithotripsy. J Acoust Soc Am 124:2011–2020

    Article  ADS  Google Scholar 

  • Kang G, Cho SC, Coleman AJ, Choi MJ (2014) Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone. J Acoust Soc Am 135:1139–1148

    Article  ADS  Google Scholar 

  • Kolacek K, Babicky V, Preinhaelter J, Sunka P, Benes J (1988) Pressure distribution measurements at the shock wave focus in water by schlieren photography. J Phys D Appl Phys 21:463–469

    Article  ADS  Google Scholar 

  • Kreider W, Bailey MR, Ketterling JA (2009) Beamwidth measurement of individual lithotripter shock waves. J Acoust Soc Am 125:1240–1245

    Article  ADS  Google Scholar 

  • KrĂ¼cker J, Eisenberg A, Krix M, Lötsch R, Pessel M, Trier HG (2000) Rigid piston approximation for computing the transfer function an angular response of a fiber-optic hydrophone. J Acoust Soc Am 107:1994–2003

    Article  ADS  Google Scholar 

  • Loske AM (2010) The role of energy density and acoustic cavitation in shock wave lithotripsy. Ultrasonics 50:300–305

    Article  Google Scholar 

  • Maxwell AD, Sapozhnikov OA, Bailey MR (2006) A new PVDF membrane hydrophone for measurement of medical shock waves. In: Proceedings of the IEEE ultrasonics symposium, IEEE, Vancouver, BC, pp. 1608–1611, 2–6 Oct 2006. doi:10.1109/ULTSYM.2006.407

  • McAteer JA, Baird T, Williams JC Jr, Hatt EK, Evan AP, Cleveland RO (2003) Voltage-stepping during SWL influences stone breakage independent of total energy delivered: in vitro studies with model stones. J Urol 169(Suppl):487

    Google Scholar 

  • MĂ¼ller M (1987) Experimental investigations on focusing of weak spherical shock waves in water by shallow ellipsoidal reflectors. Acustica 64:85–93

    Google Scholar 

  • MĂ¼ller M (1990) Dornier-Lithotripter im Vergleich. Vermessung der Stosswellenfelder und Fragmentationswirkungen. Biomed Tech 35:250–262 (in German)

    Article  Google Scholar 

  • MĂ¼ller M, Platte M (1985) Einsatz einer breitbandigen Drucksonde auf PVDF-Basis zur Untersuchung konvergierender Stosswellen in Wasser. Acustica 58:215–222 (in German)

    Google Scholar 

  • Novak P (2014) Physics: F-SW and R-SW. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L (eds) Multidisciplinary medical applications. Level10 Buchverlag, Heilbronn, pp 28–49 (Shock wave therapy in practice)

    Google Scholar 

  • Ogden JA, TĂ³th-Kischkat A, Schultheiss R (2001b) Principles of shock wave therapy. Clin Orthop Relat Res 387:8–17

    Article  Google Scholar 

  • Oosterhof GON, Smits GAHJ, de Ruyter JE, Schalken JA, Debruyne FMJ (1990a) Effects of high-energy shock waves combined with biological response modifiers or Adriamycin on a human kidney cancer xenograft. Urol Res 18:419–424

    Article  Google Scholar 

  • Oosterhof GON, Smits GAHJ, de Ruyter AE, Schalken JA, Debruyne FMJ (1990b) In vivo effects of high energy shock waves on urological tumors: an evaluation of treatment modalities. J Urol 144:785–789

    Google Scholar 

  • Oosterhof GON, Cornel EB, Smits GAHJ, Debruyne FMJ, Schalken JA (1996) The influence of high-energy shock waves on the development of metastases. Ultrasound Med Biol 22:339–344

    Article  Google Scholar 

  • Oshita D, Hosseini SHR, Okuda Y, Miyamoto Y, Sakugawa T, Katsuki S, Akiyama H (2012) Time-resolved high-speed visualization and analysis of underwater shock wave focusing generated by a magnetic pulse compression unit. IEEE Trans Plasma Sci 40:2395–2400

    Article  ADS  Google Scholar 

  • Parsons JE, Cain CA, Abrams GD, Fowlkes JB (2006a) Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol 32:115–129

    Article  Google Scholar 

  • Parsons JE, Cain CA, Fowlkes JB (2006b) Cost-effective assembly of a basic fiberoptic hydrophone for measurement of high amplitude therapeutic ultrasound fields. J Acoust Soc Am 119:1432–1440

    Article  ADS  Google Scholar 

  • Platte M (1985) A polyvinylidene fluoride needle hydrophone for ultrasonic applications. Ultrasonics 23:113–118

    Article  Google Scholar 

  • Preston RC, Bacon DR, Livett AJ, Rajendran K (1983) PVDF membrane hydrophone performance properties and their relevance to the measurement of the acoustic output of medical ultrasonic equipment. J Phys E 16:786–796

    Article  ADS  Google Scholar 

  • Rad AJ, Ueberle F, Krueger K (2014) Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements. Rev Sci Instrum 85:014902-1–014902-6. doi:10.1063/1.4861355

    Article  ADS  Google Scholar 

  • Russo P, Stephenson RA, Mies C, Huryk R, Heston WD, Melamed MR, Fair WR (1986) High energy shock waves suppress tumor growth in vitro and in vivo. J Urol 135:626–628

    Google Scholar 

  • Schafer ME (1993) Cost effective shock wave hydrophones. J Stone Dis 5:73–76

    Google Scholar 

  • Schmitz C, CsĂ¡szĂ¡r NBM, Milz S, Schieker M, Maffulli N, Rompe JD, Furia JP (2015) Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull 116:115–138

    Google Scholar 

  • Settles GS (2001) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer, Berlin

    Book  MATH  Google Scholar 

  • Smith N, Sankin GN, Simmons WN, Nanke R, Fehre J, Zhong P (2012) A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization. Rev Sci Instrum 83:014301. doi:10.1063/1.3678638

    Article  ADS  Google Scholar 

  • Sommerfeld M, MĂ¼ller M (1988) Experimental and numerical studies of shock wave focusing in water. Exp Fluids 6:209–216

    Article  Google Scholar 

  • Speed CA (2004) Extracorporeal shock-wave therapy in the management of chronic soft-tissue conditions. J Bone Joint Surg Br Vol 86:165–171

    Article  Google Scholar 

  • Staudenraus J, Eisenmenger W (1993) Fibre-optic hydrophone for ultrasonic and shock wave measurements in water. Ultrasonics 31:267–273

    Article  Google Scholar 

  • Takayama K (1983) Application of holographic interferometry to shock wave research. In: Fagan WF (ed) Industrial applications of laser technology, Proceedings of SPIE, the international society for optical engineering, SPIE, Bellingham, Washington, vol 398, pp 174–181, 19–22 Apr 1983. doi:10.1117/12.935372

  • Tu J, Matula TJ, Bailey MR, Crum LA (2007) Evaluation of a shock wave induced cavitation activity both in vitro and in vivo. Phys Med Biol 52:5933–5944

    Article  Google Scholar 

  • Ueberle F (2011) Application of shock waves and pressure pulses in medicine. In: Kramme R, Hoffmann KP, Pozos RS (eds) Springer handbook of medical technology. Springer-Verlag, Berlin, Heidelberg, pp 641–675

    Chapter  Google Scholar 

  • Ueberle F, Rad AJ (2011) Pressure pulse measurements using optical hydrophone principles. Advanced metrology for ultrasound in medicine. J Phys Conf Ser 279:012003. doi:10.1088/1742-6596/279/1/012003

    Article  ADS  Google Scholar 

  • Ueberle F, Rad AJ (2012) Ballistic pain therapy devices: measurement of pressure pulse parameters. Biomed Tech (Berl) 57(Suppl 1):700–703

    Google Scholar 

  • van Cauwelaert J (2004) Use of micro-computed tomography to follow the progression of crack formation in artificial and human stones during shock wave lithotripsy. Master’s Thesis, Boston University, Boston MA, 164 p

    Google Scholar 

  • Wan M, Feng Y, ter Haar G (eds) (2015) Cavitation in biomedicine: principles and techniques. Springer Science and Business Media, Heidelberg, New York, London

    Google Scholar 

  • Wang ZQ, Lauxmann P, Wurster C, Köhler M, Gompf B, Eisenmenger W (1999a) Impulse response of a fiber optic probe hydrophone determined with shock waves in water. J Appl Phys 85:2514–2516

    Article  ADS  Google Scholar 

  • Wang ZQ, Pecha R, Gompf B, Eisenmenger W (1999b) Single bubble sonoluminescence: investigation of the emitted pressure wave with a fiber optic probe hydrophone. Phys Rev E 59:1777–1780

    Article  ADS  Google Scholar 

  • Wess O (2004) Physikalische Grundlagen der extrakorporalen Stosswellentherapie. J Mineralstoffwechsel 4:7–18 (in German)

    Google Scholar 

  • Wess O (2013) Shock wave technology for stone fragmentation. In: Tiselius HG (ed) Urology. Level10 Buchverlag, Germany, pp 14–39 (Shock wave therapy in practice)

    Google Scholar 

  • Wess OJ, Ueberle F, DĂ¼hrĂŸen RN, Hilcken D, KrauĂŸ W, Reuner T, SchultheiĂŸ R, Staudenraus J, Rattner M, Haaks W, Granz B (1997) Working group technical developments—consensus report. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D (eds) High energy shock waves in medicine. Thieme Verlag, Stuttgart, pp 59–71

    Google Scholar 

  • Xi XF, Zhong P (2000) Improvement of stone fragmentation during shock wave lithotripsy using a combined EH/PEAA shock-wave generator—in vitro experiments. Ultrasound Med Biol 26:457–467

    Article  Google Scholar 

  • Xi X, Zhong P (2001) Dynamic photoeleastic study of the transient stress field in solids during shock wave lithotripsy. J Acoust Soc Am 109:1226–1239

    Article  ADS  Google Scholar 

  • Yamamoto S, Tagawa Y, Kameda M (2014) The evolution of a shock wave pressure induced by a laser pulse in a liquid filled thin tube using the background-oriented schlieren technique. In: Proceedings of the 17th international symposium on applications of laser techniques to fluid mechanics; Lisbon Symposia, Lisbon, Portugal, 8 p, 7–10 July 2014. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/abstracts/02.11_6.pdf. Accessed 28 June 2014

  • Yamamoto S, Tagawa Y, Kameda M (2015) Application of background-oriented schlieren (BOS) technique to a laser-induced underwater shock wave. Exp Fluids 56:93. doi:10.1007/s00348-015-1960-4

    Article  Google Scholar 

  • Zhou Y, Zhong P (2003) Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry. J Acoust Soc Am 113:586–597

    Article  ADS  Google Scholar 

  • Zijlstra A, Ohl CD (2008) On fiber optic probe hydrophone measurements in a cavitating liquid. J Acoust Soc Am 123:29–32

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Loske, A.M. (2017). Shock Waves as Used in Biomedical Applications. In: Medical and Biomedical Applications of Shock Waves. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-47570-7_3

Download citation

Publish with us

Policies and ethics