Skip to main content

Consensus-Based Agglomerative Hierarchical Clustering

  • Chapter
  • First Online:
Fuzzy Sets, Rough Sets, Multisets and Clustering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 671))

Abstract

In this contribution, we consider that a set of agents assess a set of alternatives through numbers in the unit interval. In this setting, we introduce a measure that assigns a degree of consensus to each subset of agents with respect to every subset of alternatives. This consensus measure is defined as 1 minus the outcome generated by a symmetric aggregation function to the distances between the corresponding individual assessments. We establish some properties of the consensus measure, some of them depending on the used aggregation function. We also introduce an agglomerative hierarchical clustering procedure that is generated by similarity functions based on the previous consensus measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcalde-Unzu, J., Vorsatz, M. (2013). Measuring the cohesiveness of preferences: an axiomatic analysis. Social Choice and Welfare 41, pp. 965–988.

    Google Scholar 

  2. Alcantud, J.C.R., de Andrés, R., Cascón, J.M. (2013). On measures of cohesiveness under dichotomous opinions: some characterizations of Approval Consensus Measures. Information Sciences 240, pp. 45–55.

    Google Scholar 

  3. Beliakov, G., Bustince Sola, H., Calvo Sánchez, T. (2016). A Practical Guide to Averaging Functions. Springer, Heidelberg.

    Google Scholar 

  4. Beliakov, G., Pradera, A., Calvo, T. (2007). Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg.

    Google Scholar 

  5. Bosch, R. (2005). Characterizations of Voting Rules and Consensus Measures. Ph. D. Dissertation, Tilburg University.

    Google Scholar 

  6. Calvo, T., Kolesárova, A., Komorníková, M., Mesiar, R. (2002). Aggregation operators: Properties, classes and construction methods. In: T. Calvo, G. Mayor, R. Mesiar (eds) Aggregation Operators: New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg.

    Google Scholar 

  7. Calvo, T., Mayor, G. (1999). remks on two types of extended aggregation functions. Tatra Mountains Mathematical Publications 16, pp. 235–253.

    Google Scholar 

  8. Erdamar, B., García-Lapresta, J.L., Pérez-Román, D., Sanver, M.R. (2014). Measuring consensus in a preference-approval context. Information Fusion 17, pp. 14–21.

    Google Scholar 

  9. Everitt, B.S., Landau, S., Leese, M. (2001). Cluster Analysis, 4th Edition. Oxford University Press, New York.

    Google Scholar 

  10. Fedrizzi, M., Kacprzyk, J., Owsińnski, J.W., Zadrożny, S. (1994). Consensus reaching via a GDSS with fuzzy majority and clustering of preference profiles. Annals of Operations Research 51, pp. 127–139.

    Google Scholar 

  11. Fodor, J., Marichal, J.L., Roubens, M. (1995). Characterization of the ordered weighted averaging operators. IEEE Transtactions on Fuzzy Systems 3, pp. 236–240.

    Google Scholar 

  12. Fodor, J., Roubens, M. (1994). Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  13. García-Lapresta, J.L., Llamazares, B. (2001). Majority decisions based on difference of votes. Journal of Mathematical Economics 45, pp. 463–481.

    Google Scholar 

  14. García-Lapresta, J.L., Martínez-Panero, M. (2009). Linguistic-based voting through centered OWA operators. Fuzzy Optimization and Decision Making 8, pp. 381–393.

    Google Scholar 

  15. García-Lapresta, J.L., Pérez-Román, D. (2011). Measuring consensus in weak orders. In: E. Herrera-Viedma, J.L. García-Lapresta, J. Kacprzyk, H. Nurmi, M. Fedrizzi, S. Zadrożny (eds.), Consensual Processes, STUDFUZZ, vol. 267. Springer-Verlag, Berlin, pp. 213–234.

    Google Scholar 

  16. García-Lapresta, J.L., Pérez-Román, D. (2015). Ordinal proximity measures in the context of unbalanced qualitative scales and some applications to consensus and clustering. Applied Soft Computing 35, pp. 864–872.

    Google Scholar 

  17. García-Lapresta, J.L., Pérez-Román, D. (2016). Consensus-based clustering under hesitant qualitative assessments. Fuzzy Sets and Systems 292, pp. 261–273.

    Google Scholar 

  18. García-Lapresta, J.L., Pérez-Román, D., Falcó, E. (2014). Consensus reaching processes under hesitant linguistic assessments. In: P. Angelov et al. (eds.), Intelligent Systems’2014. Advances in Intelligent Systems and Computing 322, pp. 257–268.

    Google Scholar 

  19. Gini, C. (1912). Variabilità e Mutabilità. Tipografia di Paolo Cuppini, Bologna.

    Google Scholar 

  20. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E. (2009). Aggregation Functions. Cambridge University Press, Cambridge.

    Google Scholar 

  21. Jain, A.K., Murty, M.N., Flynn, P.J. (1999). Data clustering: A review. ACM Computing Surveys 31 (3), pp. 264–323.

    Google Scholar 

  22. Martínez, L., Montero, J. (2007). Challenges for improving consensus reaching process in collective decisions. New Mathematics and Natural Computation 3, pp. 203–217.

    Google Scholar 

  23. Martínez-Panero, M. (2011). Consensus perspectives: Glimpses into theoretical advances and applications. In: E. Herrera-Viedma, J.L. García-Lapresta, J. Kacprzyk, H. Nurmi, M. Fedrizzi, S. Zadrożny (eds.), Consensual Processes, STUDFUZZ, vol. 267, Springer-Verlag, Berlin, pp. 179–193.

    Google Scholar 

  24. Mayor, G., Calvo, T. (1997). On extended aggregation functions. Proceedings of IFSA 97, vol. I, Prague, pp. 281–285.

    Google Scholar 

  25. Palomares, I., Estrella, F.J., Martínez, L., Herrera, F. (2014). Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Information Fusion 20, pp. 252–271.

    Google Scholar 

  26. Saint, S., Lawson, J.R. (1994). Rules for Reaching Consensus. A Modern Approach to Decision Making. Jossey-Bass, San Francisco.

    Google Scholar 

  27. Torra, V., Narukawa, Y. (2007). Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Berlin.

    Google Scholar 

  28. Ward Jr., J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, pp. 236–244.

    Google Scholar 

  29. Yager, R.R. (1988). On ordered weighted averaging operators in multicriteria decision making. IEEE Transactions on Systems Man and Cybernetics 8, pp. 183–190.

    Google Scholar 

  30. Yager, R.R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems 11, pp. 49–73.

    Google Scholar 

  31. Yager, R.R. (2007). Centered OWA operators. Soft Computing 11, pp. 631–639.

    Google Scholar 

  32. Yitzhaki, S. (1998). More than a dozen alternative ways of spelling Gini. Research on Economic Inequality 8, pp. 13–30.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding support of the Spanish Ministerio de Economía y Competitividad (project ECO2012-32178) and Consejería de Educación de la Junta de Castilla y León (project VA066U13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis García-Lapresta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

García-Lapresta, J.L., Pérez-Román, D. (2017). Consensus-Based Agglomerative Hierarchical Clustering. In: Torra, V., Dahlbom, A., Narukawa, Y. (eds) Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, vol 671. Springer, Cham. https://doi.org/10.1007/978-3-319-47557-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47557-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47556-1

  • Online ISBN: 978-3-319-47557-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics