Skip to main content

Role of Biotechnology in Rice Production

  • Chapter
  • First Online:

Abstract

Rice is the staple food for over half of the global population and a major calorie source. It is mainly grown in the developing world. Green revolution contributed significantly toward self-sufficiency of developing countries in rice production. Demand for rice continues to increase due to the ever increasing rice consumer base. However, the present rate of rice production has slowed down in comparison to previous decades due to various biotic and abiotic stresses. Numerous biotechnological initiatives and strategies have been undertaken aiming for an enhanced rice production. Broadly, this included tissue culture, marker-assisted breeding, and genetic engineering. The major genetic gain from biotechnology toward rice production is contributed from molecular breeding. A number of quantitative trait loci (QTLs) and genes have been identified and used in varietal improvement. Genes conferring tolerance to submergence stress, salt stress, drought, blast, and blight diseases have already been deployed to rice varietal improvement. Transgenic approach is mainly used for research, though efforts are being made for its commercial use. Bottlenecks in biosafety regulations need to get resolved for making this technology impactful. In addition to the direct application in varietal improvement, biotechnological tools are used in enhancing genetic understanding of complex traits which in turn plays a crucial role in strategizing the breeding programs. Further efforts are required for handling bottlenecks of breeding, particularly in resolving the complexity of agronomically important traits such as grain yield. In the post-green revolution era, biotechnology has played a significant role in fast-track rice varietal improvement, thereby grain production; however, there is a long way to go.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadi N, Negrão S, Katsantonis D, Frouin J, Ploux J, Letourmy P et al (2011) Targeted association analysis identified japonica rice varieties achieving Na(+)/K (+) homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theor Appl Genet [Internet]. [cited 2016 Mar 22];123(6):881–895. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21713536

  • Amante AD, Pena R de la, Sitch LA, Leung H, Mew TW (1990) Sheath blight (ShB) resistance in wild rices. Int Rice Res Newsl [Internet]. [cited 2016 Apr 6];15(3). Available from: http://www.cabdirect.org/abstracts/19901615238.html;jsessionid=AB673CDEA74E8A7D4788884399E02BF4

  • Angeles-Shim RB, Vinarao RB, Marathi B, Jena KK (2014) Molecular Analysis of Oryza latifolia Desv. (CCDD Genome)-Derived Introgression Lines and Identification of Value-Added Traits for Rice (O. sativa L.) Improvement. J Hered [Internet]. [cited 2016 Mar 27];105(5):676–689. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24939891

  • Anuradha K, Agarwal S, Batchu AK, Babu PA, Swamy BPM, Longvah T et al (2012) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Phytol [Internet] 4(1):19–25 Available from: http://journal-phytology.com/index.php/phyto/article/viewArticle/11448

    CAS  Google Scholar 

  • Asghar A, Rashid H, Ashraf M, Khan MH, Chaudhry Z (2007) Improvement of Basmati rice against fungal infection through gene transfer technology. Pakistan J Botany. pp 1277–1283

    Google Scholar 

  • Ashikari M, Ashikari M, Sakakibara H, Lin S (2008) Cytokinin oxidase regulates rice grain production. Science 741(2005):741–745

    Google Scholar 

  • Atkinson HJ, Urwin PE, McPherson MJ (2003) Engineering plants for nematode resistance. Annu Rev Phytopathol [Internet]. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303–0139, USA; 28 [cited 2016 Apr 8];41:615–639. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.41.052002.095737

  • Azizi P, Rafii MY, Maziah M, Abdullah SNA, Hanafi MM, Latif MA et al (2015) Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mech Dev [Internet] Elsevier Ireland Ltd 135:1–15 Available from: http://dx.doi.org/10.1016/j.mod.2014.11.001

    CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol [Internet]. [cited 2016 Mar 26];59:313–339. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18444902

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology - Towards genetically superior transgenic rice. Plant Biotechnol J 3(3):275–307

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Husnain T, Fatima T, Latif Z, Aks Mehdi S, Riazuddin S (2004) Field evaluation and risk assessment of transgenic indica basmati rice. Mol Breed [Internet]. May [cited 2016 Apr 10];13(4):301–312. Available from: http://link.springer.com/10.1023/B:MOLB.0000034078.54872.25

  • Bawa AS, Anilakumar KR (2013) Genetically modified foods: Safety, risks and public concerns – a review. J Food Sci Technol 50(6):1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47(2):507–518

    Article  Google Scholar 

  • Bernier J, Serraj R, Kumar A, Venuprasad R, Impa S, Veeresh Gowda RP et al (2009) The large-effect drought-resistance QTL qtl12.1 increases water uptake in upland rice. F Crop Res [Internet] 110(2):139–146. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378429008001639

  • Biswal AK (2010) Sub-cloning of synthetic Bt genes into binary vector and development of Bt transgenic rice resistant to yellow stem borer. JNT University, Hyderabad

    Google Scholar 

  • Bonilla P, Munoz NE, Dvorak J, Mackell D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci [Internet]. [cited 2016 22];85:68–76. Available from: http://agris.fao.org/agris-search/search.do?recordID=PH2003000777

  • Boonyaves K, Gruissem W, Bhullar NK (2015) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol [Internet]. Springer, Netherlands; 0(3):207–215. Available from: http://dx.doi.org/10.1007/s11103-015-0404-0

  • Bridge J, Luc M, Plowright RA (1990). Nematode parasites of rice. Plant Parasit nematodes Subtrop Trop Agric [Internet]. CAB International; [cited 2016 22];69–108. Available from: http://www.cabdirect.org/abstracts/19901182752.html;jsessionid=7CDDF7117BE62B502CEFEAAF01AF512A

  • Cabauatan PQ, Cabunagan RC, Choi I (2009) Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål 357–368.

    Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation. Plant Physiol [Internet]. [cited 2016 Mar 21];165(2):688–704. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4044838&tool=pmcentrez&rendertype=abstract

  • Cao Y, Duan L, Li H, Sun X, Zhao Y, Xu C et al (2007) Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae. Theor Appl Genet [Internet]. [cited 2016 Mar 22];115(7):887–895. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17657469

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N et al (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90(7–8):969–981

    CAS  PubMed  Google Scholar 

  • Chandra Babu R, Zhang J, Blum A, David Ho T-H, Wu R, Nguyen H (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci [Internet]. [cited 2016 Mar 22];166(4):855–862. Available from: http://www.sciencedirect.com/science/article/pii/S0168945203004837

  • Chang TT, Armenta-Soto JL, Mao CX, Peiris R, Loresto GC (1986) Genetic studies on the components of drought resistance in rice ( Oryza sativa L.). In: Rice genetics. International Rice Research Institute, Manila. pp 387–398

    Google Scholar 

  • Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q (2005) Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet [Internet]. [cited 2016 Apr 10];111(7):1330–1337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16187120

  • Chen D, Chen X, Lei C, Ma B, Wang Y, Li S (2010) Rice Blast Resistance of Transgenic Rice Plants with Pi-d2 Gene. Rice Sci [Internet]. [cited 2016 Apr 6];17(3):179–184. Available from: http://www.sciencedirect.com/science/article/pii/S1672630809600159

  • Chen M, Shelton A, Ye G (2011) Insect-resistant genetically modified rice in China: From Research to Commercialization. Annu Rev Entomol [Internet] 56(1):81–101 Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev-ento-120709-144810

    Article  CAS  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen L, Chen H et al (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci [Internet]. [cited 2016 Feb 1];193–194:8–17. Available from: http://www.sciencedirect.com/science/article/pii/S0168945212001008

  • Chen L-J, Wuriyanghan H, Zhang Y-Q, Duan K-X, Chen H-W, Li Q-T et al (2013) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol [Internet]. [cited 2016 Mar 21];163(4):1752–1765. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3850199&tool=pmcentrez&rendertype=abstract

  • Chen H, Xie W, He H, Yu H, Chen W, Li J et al (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant [Internet]. [cited 2016 Mar 19];7(3):541–553. Available from: http://www.sciencedirect.com/science/article/pii/S1674205214602549

  • Choi MS, Woo MO, Koh EB, Lee J, Ham TH, Seo HS et al (2012) Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep 31(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci [Internet] 363(1491):557–572 Available from: http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Courtois B, McLaren G, Sinha PK, Prasad K, Yadav R, Shen L (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6(1):55–66

    Article  CAS  Google Scholar 

  • Dai S, Beachy RN (2009) Genetic engineering of rice to resist rice tungro disease. Vitr Cell Dev Biol – Plant [Internet] 45(5):517–524 Available from: http://link.springer.com/10.1007/s11627-009-9241-7

    Article  CAS  Google Scholar 

  • Dai S, Wei X, Alfonso AA, Pei L, UG D, Zhang Z et al (2008) Transgenic rice plants that overexpress transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease. Proc Natl Acad Sci U S A [Internet] 105(52):21012–21016 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2634887&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  • Daorong F, Jianwen W, Xinping X, Yao X, Baojian L (1999) Introduction of multiple antifungal protein genes into rice and preliminary study on resistance to Pyricularia oryzae of transgenic rices. Acta Sci Nat Univ Sunyatseni [Internet]. [cited 2016 Apr 6];38(4):62–66. Available from: http://europepmc.org/abstract/CBA/329901

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW et al (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160(3):405–414

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet [Internet]. [cited 2016 Mar 22];106(1):1–8. Available from: http://link.springer.com/article/10.1007/s00122-002-1014-1

  • Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J [Internet]. [cited 2016 Mar 21];10(5):579–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22385556

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    Article  CAS  PubMed  Google Scholar 

  • Dennis ESS, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU et al (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot [Internet]. [cited 2016 Mar 22];51(342):89–97. Available from: http://jxb.oxfordjournals.org/content/51/342/89.full

  • Dimkpa SON, Lahari Z, Shrestha R, Douglas A, Gheysen G, Price AH (2016) A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes. J Exp Bot [Internet] 67(4):1191–1200 Available from: http://jxb.oxfordjournals.org/content/early/2015/11/07/jxb.erv470.full

    Article  CAS  Google Scholar 

  • Ding X-L, Jiang L, Liu S-J, Wang C-M, Chen L-M, Cheng Z-B et al (2004) [QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV85]. Yi Chuan Xue Bao [Internet]. [cited 2016 Mar 22];31(3):287–292. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15195569

  • Dingkuhn M, Sow A, Manneh B (2015) Field phenomics for response of a rice diversity panel to ten environments in Senegal and Madagascar. 1. Plant phenological traits. F Crop … [Internet]. [cited 2016 Mar 20]; Available from: http://www.sciencedirect.com/science/article/pii/S0378429015300307

  • Dixit S, Biswal AK, Min A, Henry A, Oane RH, Raorane ML et al (2015) Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci Rep [Internet]. Nature Publishing Group 5(April):15183. Available from: http://www.nature.com/articles/srep15183

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol [Internet]. Nature Publishing Group 12(4):211–221. Available from: http://dx.doi.org/10.1038/nrm3088

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z et al (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci U S A [Internet]. 29 [cited 2016 Apr 10];106(52):22163–22168. Available from: http://www.pnas.org/content/106/52/22163.abstract

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One [Internet]. [cited 2016 Feb 18];7(9):e45117. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3443202&tool=pmcentrez&rendertype=abstract

  • Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag Sci 61(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Encabo JR, Cabauatan PQ, Cabunagan RC, Satoh K, Lee J-H, Kwak D-Y et al (2009) Suppression of two tungro viruses in rice by separable traits originating from cultivar Utri Merah. Mol Plant Microbe Interact [Internet]. [cited 2016 Mar 22]; 22(10):1268–1281. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19737100

  • Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52(1):157–166

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Yu S, Wang C, Xing Y (2009) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118(3):465–472

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Nat … [Internet]. [cited 2016 Apr 10]; Available from: http://www.nature.com/nbt/journal/v11/n10/abs/nbt1093-1151.html

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. F Crop Res 40(2):67–86

    Article  Google Scholar 

  • Ganesan U, Suri SS, Rajasubramaniam S, Rajam MV, Dasgupta I (2009) Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes [Internet]. [cited 2016 Mar 22];39(1):113–119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19387813

  • Gatehouse A (1992) Control of insect pests by plant genetic engineering. Proc R Soc Edinburgh Sect B Biol Sci [Internet]. [cited 2016 Apr 10];99(3–4):51–60. Available from: http://journals.cambridge.org/abstract_S0269727000005492

  • Geethanjali S, Kadirvel P, Gunathilagaraj K, Maheswaran M (2009) Detection of quantitative trait loci (QTL) associated with resistance to whitebacked planthopper ( Sogatella furcifera ) in rice ( Oryza sativa ). Plant Breed [Internet] 128(2):130–136 Available from: http://doi.wiley.com/10.1111/j.1439-0523.2008.001565.x

    Article  CAS  Google Scholar 

  • Gergon EB, Prot (1993) Effect of benomyl and carbofuran on Aphelenchoides besseyi on rice. Fund Appl Nematol [Internet]. [cited 2016 Mar 22];16(6):563–566. Available from: http://www.cabi.org/isc/abstract/19932339761

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17(3):282–286

    Article  CAS  PubMed  Google Scholar 

  • Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. F Crop Res [Internet]. Apr [cited 2016 Feb 24]; 122(1):1–13. Available from: http://www.sciencedirect.com/science/article/pii/S037842901100061X

  • Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P (2011) Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell [Internet] 23(6):2087–2105 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160039{{}{&}{}}tool=pmcentrez{{}{&}{}}rendertype=abstract

    Google Scholar 

  • Gregorio G (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). University of the Philippines, Los Baños

    Google Scholar 

  • Gu J-F, Qiu M, Yang J-C (2013) Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes. Crop J [Internet]. [cited 2016 Feb 1];1(2):105–114. Available from: http://www.sciencedirect.com/science/article/pii/S2214514113000226

  • Guo C, Ge X, Ma H (2013) The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol Biol [Internet]. [cited 2016 Mar 21];82(3):239–253. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23686450

  • Gupta SK, Rai AK, Kanwar SS, Chand D, Singh NK, Sharma TR (2012) The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice. J Exp Bot 63(2):757–772

    Article  CAS  PubMed  Google Scholar 

  • Han SM, Lee B, Won OJ, Hwang KS, Suh SJ, Kim C et al (2015) Gene flow from herbicide resistant genetically modified rice to conventional rice (Oryza sativa L.) cultivars. 38(4):397–403.

    Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature [Internet]. Macmillan Publishers Limited. All rights reserved; 20 [cited 2016 Mar 8];460(7258):1026–1030. Available from: http://dx.doi.org/10.1038/nature08258

  • Hegde S, Hegde V (2013) Assessment of global rice production and eExport opportunity for eEconomic development in Ethiopia. Int J Sci Res 2(6):257–260

    Google Scholar 

  • Heinrichs EA, Institute IRR (1985) Genetic evaluation for insect resistance in rice [Internet]. Int Rice Res Inst. [cited 2016 Apr 10]. 356 p. Available from: https://books.google.com/books?hl=en&lr=&id=kz5XQyd-VbMC&pgis=1

  • Herdt RW (1991) Research priorities for rice biotechnology. In: Khush GS, Toenniessen GH, editors. Rice biotechnology. B International with International Rice Research Institute. pp 19–54.

    Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing Y-I, Eun MY, Han C-D et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol [Internet] 54(3):325–334 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15284490

    Article  CAS  Google Scholar 

  • Hong B, Uknes S, Ho T (1988) Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol Biol [Internet]. [cited 2016 Mar 21]; Available from: http://link.springer.com/article/10.1007/BF00039030

  • Hong C-Y, Cheng K-J, Tseng T-H, Wang C-S, Liu L-F, Yu S-M (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res [Internet]. [cited 2016 Apr 4];13(1):29–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15070073

  • Hossain H, Rahman MA, Alam MS, Singh RK (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agron Crop Sci [Internet]. [cited 2016 Mar 22]; 201(1):17–31. Available from: http://doi.wiley.com/10.1111/jac.12086

  • Hsing Y-I, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF et al (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63(3):351–364

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A [Internet] 103(35):12987–12992 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1559740&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  • Hu J, Xiao C, Cheng M-X, Gao G-J, Zhang Q-L, He Y-Q (2015) A new finely mapped Oryza australiensis-derived QTL in rice confers resistance to brown planthopper. Gene [Internet]. [cited 2016 Apr 10];561(1):132–137. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25682936

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G et al (1997 Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. TAG Theor Appl Genet [Internet]. 20 [cited 2016 Mar 22];95(3):313–320. Available from: http://link.springer.com/10.1007/s001220050565

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D et al (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet [Internet] 41(4):494–497 Available from: http://www.nature.com/doifinder/10.1038/ng.352

    Article  CAS  Google Scholar 

  • Hurd EA (1964) Root study of three wheat varieties and their resistance to drought and damage by soil cracking. Can J Plant Sci 44(3):240–248

    Article  Google Scholar 

  • Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M et al (2009) Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol [Internet] 150(2):736–747 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2689948&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  • ILSI International Food Biotechnology Committee (2008) Golden Rice 2. Compr Rev Food Sci Food Saf [Internet] 7(1):92–98 Available from: http://doi.wiley.com/10.1111/j.1541-4337.2007.00029_7.x

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol [Internet] 47(1):377–403 Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.47.1.377

    Article  CAS  Google Scholar 

  • International Rice Research Institute (2006) High-iron and -zinc rice Why [Internet]. Rice fact sheet. p. 2006. Available from: http://www.doc-developpement-durable.org/file/Culture-plantes-alimentaires/FICHES_PLANTES/riz/fs_Fe%20And%20Zn%20rice%20irri.pdf

  • International Rice Research Institute (2013) Wild parent spawns super salt-tolerant rice [Internet]. [cited 2016 Mar 22]. Available from: http://irri.org/news/119-wild-parent-spawns-super-salt-tolerant-rice

  • Ishizaki T, Maruyama K, Obara M, Fukutani A, Yamaguchi-Shinozaki K, Ito Y et al (2013) Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Mol Breed [Internet]. [cited 2016 Mar 21];31(2):255–264. Available from: http://link.springer.com/10.1007/s11032-012-9785-9

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65(4):547–570

    Article  CAS  PubMed  Google Scholar 

  • Jahan G, Hassan L, Begum SN, Islam SN (2013) Identification of Iron rich rice genotypes in Bangladesh using chemical analysis. J Bangladesh Agril Univ [Internet] 11(1):73–78 Available from: http://www.banglajol.info/bd/index.php/JBAU/article/view/18216

    Google Scholar 

  • Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci [Internet] 48(4):1266. Available from: https://www.crops.org/publications/cs/abstracts/48/4/1266

  • Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet [Internet]. [cited 2016 Apr 10];112(2):288–297. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16240104

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res [Internet] 18:59–69 Available from: http://link.springer.com/10.1007/s11248-008-9196-1

    Article  CAS  Google Scholar 

  • Jia Y, Liu G 2011 Mapping quantitative trait loci for resistance to rice blast

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jouanin L, Bonadé-Bottino M, Girard C (1998) Transgenic plants for insect resistance. Plant Sci [Internet]. [cited 2016 Apr 10]; Available from: http://www.sciencedirect.com/science/article/pii/S0168945297002392

  • Jung S, Chung JS, Chon SU, Kuk YI, Lee HJ, Guh JO et al (2004) Expression of recombinant protoporphyrinogen oxidase influences growth and morphological characteristics in transgenic rice. Plant Growth Regul 42(3):283–288

    Article  CAS  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav [Internet]. Taylor & Francis; [cited 2016 Mar 21];5(3):233–238. Available from: http://www.tandfonline.com/doi/abs/10.4161/psb.5.3.10740

  • Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJA et al (2011) Strategies for engineering a two-celled C 4 photosynthetic pathway into rice. J Exp Bot 62(9):3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Kalode MB, Reazul Karim ANM, Pongprasert S, Heinrichs EA (1986) Varietal improvement and resistance to insect pests [Bangladesh; India; Philippines; Thailand]. In: Progress in rainfed lowland rice [Internet]. International Rice Research Institute; [cited 2016 Apr 10]. pp 240–252. Available from: http://agris.fao.org/agris-search/search.do?recordID=PH8810043

  • Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E et al (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci [Internet] 170(2):203–215 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168945205002918

    Article  CAS  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R et al (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105(6–7):809–814

    CAS  PubMed  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J [Internet]. [cited 2016 Mar 22];7(6):512–526. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19490479

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (2013) C4 photosynthesis. Curr Biol [Internet] 23(14):R594–R599. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960982213005071

  • Khan AS, Imran M, Ashfaq M (2009) Estimation of genetic variability and correlation for grain yield components in rice. Am-Euras Journal Agriculture & Environmental Science. p. 585–590.

    Google Scholar 

  • Khush GS, Jena K (2009) Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In: Wang G-L, Valent B, editors. Advances in genetics, genomics and control of rice blast disease [Internet]. Springer, Dordrecht; [cited 2016 Apr 3]. pp 1–10. Available from: http://link.springer.com/10.1007/978-1-4020-9500-9_1

  • Khush G, Kinoshita T (1991) Rice karyotype, marker genes, and linkage groups. Rice Biotechnol [Internet]. [cited 2016 Mar 22]; Available from: https://books.google.com/books?hl=en&lr=&id=xo6v-I8GYc8C&oi=fnd&pg=PA83&dq=Rice+karotype,+marker+gene+and+linkage+groups&ots=Rtr3uiyf9I&sig=5EsprXDGulAdBn7B5dy_ovpAawM

  • Khush G, Mackill D, Sidhu G (1989) Breeding rice for resistance to bacterial blight. Bact blight rice [Internet]. [cited 2016 Mar 22]; Available from: https://books.google.com/books?hl=en&lr=&id=G_L8pPRZmjwC&oi=fnd&pg=PA207&dq=Breeding+rice+for+resistance+to+bacterial+blight.+Bacterial+Blight+of+Rice&ots=OEP-9upBvr&sig=dz4Y9NC-1aFGtGYwLoXcJox6FHU

  • Kinoshita T (1995) Report of the Committee on Gene Symbolization, Nomenclature and Linkage Groups. Rice Genet Newslet [Internet]. [cited 2016 Apr 6];12:9–153. Available from: http://archive.gramene.org/newsletters/rice_genetics/rgn3/v3C.html

  • Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231(2):364–373

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H et al (2003) LAX and SPA: Major regulators of shoot branching in rice. Proc Natl Acad Sci [Internet] 100(20):11765–11770 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1932414100

    Article  CAS  Google Scholar 

  • Krishnamurthy K, Giroux MJ (2001) Expression of wheat puroindoline genes in transgenic rice enhances grain softness. Nat Biotechnol [Internet] 19(February):162–166 Available from: http://www.nature.com/doifinder/10.1038/84435

    Article  CAS  Google Scholar 

  • Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: Heritability and QTL effects. F Crop Res [Internet] 103(1):42–52 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378429007000925

    Article  Google Scholar 

  • Kumar V, Bellinder RR, Gupta RK, Malik RK, Brainard DC (2008) Role of herbicide-resistant rice in promoting resource conservation technologies in rice-wheat cropping systems of India: a review. Crop Prot 27(3–5):290–301

    Article  Google Scholar 

  • Kumar S, Jin M, Weemhoff J (2012) Cytochrome P450-mediated phytoremediation using transgenic plants: a need for engineered cytochrome P450 enzymes. J Pet Environ Eng 29(6):997–1003

    Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot [Internet] 65(21):6265–6278 Available from: http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/eru363

    Article  CAS  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature [Internet]. 445(7128):652–655. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17287810

  • Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci U S A [Internet] 95(5):1979–1982 Available from: http://www.pnas.org/content/95/5/1979.abstract

    Article  CAS  Google Scholar 

  • Lakshmanan P, Velusamy R (1991) Resistance to sheath blight ShB and brown spot BS in lines derived from Oryza officinalis. Int Rice Res Newsl [Internet]. [cited 2016 Apr 6];16(6):8. Available from: http://eurekamag.com/research/002/209/002209519.php

  • Lang NT, Tao N Van, Buu BC (2011) Marker-assisted backcrossing (MAB) for rice submergence tolerance in Mekong Delta. Omonrice 21:11–21.

    Google Scholar 

  • Lang N thi, Buu B, Ismail A (2008) Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza sativa L.). Omonrice [Internet]. [cited 2016 Mar 21];16:5056. Available from: http://clrri.org/ver2/uploads/noidung/16-7.pdf

  • Lang NT, Thi P, Ha T, Nha CT, Hieu N Van, Hon D Van et al (2013) Introgression of Sub1 gene into local popular varieties and newly developed elite breeding lines in the mekong delta. Omonrice 19:27–39.

    Google Scholar 

  • Lee F, Rush M (1983) Rice sheath blight: a major rice disease. Plant Dis [Internet]. [cited 2016 Apr 6]; Available from: http://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1983Articles/PlantDisease67n07_829.pdf

  • Lee TTT, Wang MMC, Hou RCW, Chen L-J, Su R-C, Wang C-S et al (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci Biotechnol Biochem 67(8):1699–1705

    Article  PubMed  Google Scholar 

  • Lentini Z, Lozano I, Tabares E, Fory L, Domínguez J, Cuervo M et al (2003) Expression and inheritance of hypersensitive resistance to rice hoja blanca virus mediated by the viral nucleocapsid protein gene in transgenic rice. Theor Appl Genet [Internet]. [cited 2016 Mar 21];106(6):1018–1026. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12671749

  • Leyser O (2003) Regulation of shoot branching by auxin. Trends Plant Sci 8(11):541–545

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pinson S, Marchetti M (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl … [Internet]. [cited 2016 Apr 6]; Available from: http://link.springer.com/article/10.1007/BF00220903

  • Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J et al (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58(4):592–605

    Article  CAS  PubMed  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, O’Toole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot [Internet]. [cited 2016 Mar 19];47(302):1427–1436. Available from: http://jxb.oxfordjournals.org/content/47/9/1427

  • Lin X. (1996) Identifying and Mapping a New Gene for Bacterial Blight Resistance in Rice Based on RFLP Markers. Phytopathology. p. 1156.

    Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA et al (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet [Internet]. [cited 2016 Mar 22];108(2):253–260. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14513218

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012). Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the red river delta of Vietnam. Int J Plant Genomics [Internet]. 2012:1–9. Available from: http://www.hindawi.com/journals/ijpg/2012/949038/

  • Liu G, Jia Y, Prado GA, Yeater KM, Mcclung A, Correll JC (2009) Mapping quantitative trait loci for resistance to sheath blight in rice. Phytopathology 99(i):1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Loc N, Tinjuangjun P, Gatehouse A (2002) transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol … [Internet]. [cited 2016 Apr 10]; Available from: http://link.springer.com/article/10.1023/A:1020333210563

  • Lonnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr [Internet]. [cited 2016 Apr 4];77(6):1537S–1543. Available from: http://ajcn.nutrition.org/content/77/6/1537S.short

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. TAG Theor Appl Genet [Internet]. [cited 2016 Apr 4];102(2–3):392–397. Available from: http://link.springer.com/10.1007/s001220051659

  • MacKill DJ (2008) Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci. In: Lamkey KR, Lee M (eds). Plant breeding: the Arnel R Hallauer International Symposium [Internet]. Blackwell Publishing, Ames; [cited 2016 Mar 22]. pp 201–212. Available from: http://doi.wiley.com/10.1002/9780470752708

  • Mackill DJ, Amante MM, Vergara BS, Sarkarung S ( 1993) Improved Semidwarf Rice Lines with Tolerance to Submergence of Seedlings. Crop Sci [Internet] 33(4):749. Available from: https://www.crops.org/publications/cs/abstracts/33/4/CS0330040749

  • Maeda H, Nemoto H, Yagi T, Fukuta Y (1999) QTL analysis for rice stripe disease resistance using recombinant inbred lines (RILs) derived from crossing between Milyang 23 and Akihikari. In: China Association of Agricultural Science Societies, China National Rice Research Institute, China National Hybrid Rice Research and Development Center, China Foundation Society for Agricultural Science and Education (eds) Prospects of rice genetics and b. Beijing: China Agricultural Science Technology Press. pp 53–57.

    Google Scholar 

  • Maeda H, Sugisawa T, Nemoto H, Sunohara Y (2004) QTL analysis for rice stripe resistance in the Japanese Upland Rice Kanto72. Breed Sci [Internet] 54(1):19–+. Available from: <Go to ISI>://000221368400003

    Google Scholar 

  • Maeda H, Matsushita K, Iida S, Sunohara Y (2006) Characterization of two QTLs controlling resistance to rice stripe virus detected in a Japanese upland rice line, Kanto 72. Breed Sci [Internet]. Japanese Society of Breeding; Dec [cited 2016 Mar 21];56(4):359–364. Available from: http://ci.nii.ac.jp/naid/110004863707/en/

  • Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber AP, Westhoff P et al (2014) The role of photorespiration during the evolution of C 4 photosynthesis in the genus Flaveria. Elife [Internet] 3:1–23 Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.02478

    Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-KK, Pardo JM et al (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol [Internet]. 143(2):1001–1012. Available from: http://dx.doi.org/10.1104/pp.106.092635\nhttp://www.plantphysiol.org/cgi/doi/10.1104/pp.106.092635

  • Maruthasalam S, Kalpana K, Kumar K (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep [Internet]. [cited 2016 Mar 21]; Available from: http://link.springer.com/article/10.1007/s00299-006-0292-5

  • McWilliam JR (1989) The dimensions of drought. In: Baker FWGB, editor. Drought resistance in cereals. CAB International, Wallingford. pp 1–11

    Google Scholar 

  • Meng L, Zhao X, Ponce K, Ye G, Leung H (2016) QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. F Crop Res [Internet]. Elsevier B.V. 189:19–42. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378429016300259

  • Mew T (1987) Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol [Internet]. [cited 2016 Mar 21]; Available from: http://www.annualreviews.org/doi/pdf/10.1146/annurev.py.25.090187.002043

  • Ming X, Wang L, An C, Yuan H, Chen Z (2000) Resistance to rice blast (Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through agrobacterium method. Chinese Sci Bull [Internet]. [cited 2016 Apr 6];45(19):1774–1778. Available from: http://link.springer.com/10.1007/BF02886265

  • Mishra KK, Vikram P, Yadaw RB, Swamy BPM, Dixit S, Teresa M et al (2013) qDTY 12. 1: a locus with a consistent effect on grain yield under drought in rice. BMC Genet [Internet]. BMC Genetics 14(1):1. Available from: BMC Genetics

    Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, Asano K et al (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet [Internet] 42(6):545–549. Available from: http://www.nature.com/ng/journal/v42/n6/abs/ng.592.html?lang=en\nhttp://www.nature.com/ng/journal/v42/n6/pdf/ng.592.pdf

  • Miyao M, Masumoto C, Miyazawa SI, Fukayama H (2011) Lessons from engineering a single-cell C 4 photosynthetic pathway into rice. J Exp Bot 62(9):3021–3029

    Article  CAS  PubMed  Google Scholar 

  • Mohanan KV, Mini CB (2008) Relative contribution of rice tillers of different status towards yield. Int J Plant Breed Genet [Internet] 2(1):9–12. Available from: http://www.scialert.net/abstract/?doi=ijpbg.2008.9.12

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N et al (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    Article  CAS  PubMed  Google Scholar 

  • Mottaleb KA, Rejesus RM, Murty M, Mohanty S, Li T (2016) Benefits of the development and dissemination of climate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia. Mitig Adapt Strateg Glob Chang [Internet]. Available from: http://link.springer.com/10.1007/s11027-016-9705-0

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol [Internet]. Ann Rev. [cited 2015 Feb 21];59:651–681. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.59.032607.092911

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1 CENTRORADIALIS homologs, confers delay of phase. 29.

    Google Scholar 

  • Nakashima K, Tran L-SP, Van Nguyen D, Fujita M, Maruyama K, Todaka D et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J [Internet] 51(4):617–630 Available from: http://doi.wiley.com/10.1111/j.1365-313X.2007.03168.x

    Article  CAS  Google Scholar 

  • Nandi S, Suzuki Y, Huang J, Yalda D, Pham P (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci [Internet]. [cited 2016 Apr 4]; Available from: http://www.sciencedirect.com/science/article/pii/S0168945202001656

  • Negrão S, Courtois B, Ahmadi N (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev … [Internet]. [cited 2016 Mar 21]; Available from: http://www.tandfonline.com/doi/abs/10.1080/07352689.2011.587725

  • Nguyen HT, Joshi CP (1994) Molecular genetic approaches to improving heat and drought stress tolerance in crop plants. In: Cherry JH, editor. Biochemical and cellular mechanisms of stress tolerance in plants [Internet]. Springer Berlin Heidelberg, Berlin/Heidelberg: [cited 2016 Mar 19]. pp 279–289. Available from: http://www.springerlink.com/index/10.1007/978-3-642-79133-8

  • Nguyen Thi Lang BCB (2003) Genetic and physical maps of gene Bph-10 controling brown plant hopper resistance in rice (Oryza sativa L.). Omonrice 11:35–41

    Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M et al (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet [Internet]. [cited 2016 Apr 6];99(3–4):383–390. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22665169

  • O’Toole J (1982) Adaptation of rice to drought prone environments. In: Drought resistance in crops with emphasis on rice. International Rice Research Institute, Manila/Los Banos. pp 195–213

    Google Scholar 

  • Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M et al (1996) Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed [Internet]. Dec [cited 2016 Apr 10];2(4):359–368. Available from: http://link.springer.com/10.1007/BF00437914

  • Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T (2010) Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4(+) concentrations in hydroponic conditions. Theor Appl Genet [Internet]. [cited 2016 Mar 19];121(3):535–547. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2903690&tool=pmcentrez&rendertype=abstract

  • Ookawa T, Ishihara K (1993) Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice. Japanese J Crop Sci [Internet] 14 [cited 2016 Mar 27];62(3):378–384. Available from: https://www.jstage.jst.go.jp/article/jcs1927/62/3/62_3_378/_article

  • Ouyang S-Q, Liu Y-F, Liu P, Lei G, He S-J, Ma B et al (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J [Internet]. [cited 2016 Mar 15];62(2):316–329. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20128882

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol [Internet]. Nature Publishing Group; [cited 2016 Mar 4];23(4):482–487. Available from: http://dx.doi.org/10.1038/nbt1082

  • Palanivel H, Ponnusamy S (2014) Mapping QTL’s for yellow stem borer resistance in rice [Internet]. LAMBERT Academic Publishing; [cited 2016 Apr 10]. Available from: http://www.amazon.com/Mapping-QTLs-Yellow-Borer-Resistance/dp/3659520152

  • Pandey S, Bhandari H (2009) Drought, coping mechanisms and poverty: insights from rainfed rice farming in Asia [Internet]. Policy.International Fund for Agricultural Development Rome; 49 p. Available from: http://www.ifad.org/operations/projects/regions/pi/paper/7.pdf

  • Pandey S, Bhandari H, Hardy B (eds) (2007) Economic costs of drought and rice farmers’ coping mechanisms: a cross-country comparative analysis. International Rice Research Institute, Los Baños

    Google Scholar 

  • Panwar MS, Rao YS (1998) Status of phytonematodes as pests of rice. In: Nematode disease in plant. In: Trivedi PC (ed). Nematode disease in plant.CBS Publishers and Distributors, New Delhi. pp 49–81

    Google Scholar 

  • Park MR, Baek S-H, de los Reyes BG, Yun SJ (2007) Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil [Internet]. 6 [cited 2016 Jun 19];292(1–2):259–269. Available from: http://link.springer.com/10.1007/s11104-007-9222-8

  • Pastorello EA, Varin E, Farioli L, Pravettoni V, Ortolani C, Trambaioli C et al (2001) The major allergen of sesame seeds (Sesamum indicum) is a 2S albumin. J Chromatogr B Biomed Sci Appl [Internet]. 756(1–2):85–93. Available from: http://www.sciencedirect.com/science/article/pii/S0378434701000731

  • Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17(2):159–171

    Article  CAS  Google Scholar 

  • Perata P, Voesenek LACJ (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci [Internet]. [cited 2016 Mar 26];12(2):43–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17208508

  • Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S et al (2010) Photorespiration. Arabidopsis Book [Internet]. 8:e0130. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3244903&tool=pmcentrez&rendertype=abstract

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ et al (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci [Internet]. [cited 2016 Mar 21];11(8):372–374. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16809061

  • Pokharel RR, Duxbury JM, Abawai G (2012) Evaluation of protocol for assessing the reaction of rice and wheat germplasm to infection by meloidogyne graminicola. J Nematol [Internet] 44(3):274–283 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3547335&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  • Prasad B, Eizenga GC (2008) Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis [Internet] 92(11):1503–1509. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-92-11-1503

  • Prasad J, Vijayakumar C (2006) Root-knot nematode resistance in advanced back cross populations of rice developed for water stress conditions. Nematol … [Internet] 34:3–8. Available from: http://www.inaav.ba.cnr.it/vol34-1, 2006/vol34-1a.pdf

  • Price AH, Steele KA, Moore BJ, Barraclough PP, Clark LJ (2000) A combined RFLP and AFLP linkage map of upland rice ( Oryza sativa L.) used to identify QTLs for root-penetration ability. TAG Theor Appl Genet [Internet]. [cited 2016 Mar 19];100(1):49–56. Available from: http://link.springer.com/10.1007/s001220050007

  • Prot J (1994) Combination of nematodes, Sesbania rostrata, and rice: the two sides of the coin. Int Rice Res Notes [Internet]. [cited 2016 Mar 21]; Available from: http://agris.fao.org/agris-search/search.do?recordID=PH9510342

  • Quimio C, Torrizo L, Setter T (2000) Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. J Plant … [Internet]. [cited 2016 Mar 21]; Available from: http://www.sciencedirect.com/science/article/pii/S0176161700801674

  • Rahman M, Grover A, Peacock WJ, Dennis ES, Ellis MH (2001) Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust J Plant Physiol 28(28):1231–1241 ST – Effects of manipulation of pyruvat.

    Google Scholar 

  • Rahman L, Khanam MS, Koh H-J (2008) QTL analysis for yield related traits using populations derived from an indica-japonica hybrid in rice ( Oryza sativa L .). Czech J Genet Plant Breed 44(3):93–104.

    Google Scholar 

  • Ram T, Majumder ND, Laha GS, Ansari MM, Kar CS, Mishra B (2008) Identification of donors for sheath blight resistance in wild species of rice. Indian J Genet Plant Breed [Internet]. The Indian Society of Genetics & Plant Breeding New Delhi, India; [cited 2016 Apr 6];68(3):317–319. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ijgpb&volume=68&issue=3&article=015

  • Ramesh S, Nagadhara D, Reddy V, Rao K (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci [Internet]. [cited 2016 Apr 10]; Available from: http://www.sciencedirect.com/science/article/pii/S0168945203005491

  • Rao K, Lakshminarasu M, Jena K (2002) DNA markers and marker-assisted breeding for durable resistance to bacterial blight disease in rice. Biotechnol Adv [Internet]. [cited 2016 Mar 21]; Available from: http://www.sciencedirect.com/science/article/pii/S0734975002000022

  • Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105(9):3646–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindra H, Mukesh S, Narasimhamurthy HB, Imran Khan HS, Shruthi AS (2015) Evaluation of rice landraces against rice root-knot nematode, Meloidogyne graminicola. African J Microbiol Res [Internet]. ;9(16):1128–1131. Available from: http://academicjournals.org/journal/AJMR/article-abstract/59A896652657

  • Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet [Internet]. [cited 2016 Mar 2];37(10):1141–1146. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16155566

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci [Internet]. [cited 2016 Mar 21];163(3):525–532. Available from: http://www.sciencedirect.com/science/article/pii/S0168945202001553

  • Romero LE, Lozano I, Garavito A, Carabali SJ, Triana M, Villareal N et al (2014) Major QTLs control resistance to rice hoja blanca virus and its vector Tagosodes orizicolus. G3 (Bethesda) [Internet]. Jan [cited 2016 Apr 8];4(1):133–142. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3887529&tool=pmcentrez&rendertype=abstract

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S. (1967) Linkage studies on the resistance to bacterial leaf blight Xanthomonas oryzae (Uyeda et Ishiyama) DOWSON, in rice. Bull Natl Inst Agric Sci D(16):1–18.

    Google Scholar 

  • Sakamoto A, Murata A (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol [Internet]. [cited 2016 Mar 21]; Available from: http://link.springer.com/article/10.1023/A:1006095015717

  • Sanchez A, Brar D, Huang N (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci [Internet]. [cited 2016 Mar 21]; Available from: https://dl.sciencesocieties.org/publications/cs/abstracts/40/3/792

  • Sardar G, Mallick GK, Jana K, Ghosh S (2015) Screening of high iron and zinc rice genotypes in red and lateritic areas of West Bengal. Int J Appl Bioresearch 23:7–9

    Google Scholar 

  • Sasaya T, Nakazono-Nagaoka E, Saika H, Aoki H, Hiraguri A, Netsu O et al (2013) Transgenic strategies to confer resistance against viruses in rice plants. Front Microbiol 4(JAN):1–11

    Google Scholar 

  • Scarabel L, Cenghialta C, Manuello D, Sattin M (2012) Monitoring and Management of Imidazolinone-Resistant Red Rice (Oryza sativa L., var. sylvatica) in Clearfield® Italian Paddy Rice. Agronomy [Internet]. 2(4):371–383. Available from: http://www.mdpi.com/2073-4395/2/4/371/

  • Schmit V, Reversat G, Soriano I, Brar D, Prot J-C (1999) Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and O. glaberrima. Nematology 1(4):395–398

    Article  Google Scholar 

  • Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S et al (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet [Internet] 124(5):867–874. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22083356

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature [Internet]. [cited 2016 Feb 16];431(7008):582–586. Available from: http://dx.doi.org/10.1038/nature02880

  • Setter T, Ellis M, Laureles E (1997) Physiology and genetics of submergence tolerance in rice. Ann Bot [Internet]. [cited 2016 Mar 26];79:67–77. Available from: http://aob.oxfordjournals.org/content/79/suppl_1/67.short

  • Sharma SB, Rahaman PF (1998). Nematode pests in rice and wheat cropping systems in the Indo-Gangatic plain. In: Sharma SB, Johasan C, Midha SE (eds). Nematode pets in rice-wheat legume cropping systems. Proceedings of a regional training course 1–5 September 1997, CCS Harayana Agricultural University, Hisar, Harayana, India. Rice-Wheat Consortium paper series 4.Rice-Wheat Consortium for the IndoGangatic Plains, New Delhi. pp 11–16

    Google Scholar 

  • Sharma TR, AK R, SK G, Vijayan J, BN D, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agric Res 1(1):37–52

    Article  Google Scholar 

  • Sharma-poudyal D, Pokharel RR, Shrestha SM, Khatri-chhetri GB (2004) Evaluation of Common Nepalese Rice Cultivars Against Rice Root Knot Nematode. Sci York 5:33–36

    Google Scholar 

  • Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. TAG Theor Appl Genet [Internet]. [cited 2016 Mar 19];103(1):75–83. Available from: http://link.springer.com/10.1007/s001220100538

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127(4):1405–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha R, Uzzo F, Wilson MJ, Price AH (2007) Physiological and genetic mapping study of tolerance to root-knot nematode in rice. New Phytol [Internet]. [cited 2016 Mar 21];176(3):665–672. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17822410

  • Shu Q, Ye G, Cui H, Cheng X, Xiang Y, Wu D (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol … [Internet]. [cited 2016 Apr 10]; Available from: http://link.springer.com/article/10.1023/A:1009658024114

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS et al (2001) Pyramiding three bacterial blight resistance genes ( xa5 , xa13 and Xa21 using marker-assisted selection into indica rice cultivar PR106. TAG Theor Appl Genet [Internet]. 25 [cited 2016 Mar 21];102(6–7):1011–1015. Available from: http://link.springer.com/10.1007/s001220000495

  • Singh RK, Redoña E, Refuerzo L (2010) Abiotic Stress Adaptation in Plants [Internet]. Pareek A, Sopory SK, Bohnert HJ (eds). Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer Netherlands, Dordrecht. pp 1–526. Available from: http://link.springer.com/10.1007/978-90-481-3112-9

  • Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S et al (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. F Crop Res 128(March):8–16

    Article  Google Scholar 

  • Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet [Internet] 39(5):623–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17417637

  • Sparks A, Nelson A, Castilla N (2012) Where rice pests and diseases do the most damage. Rice Today 11(4):27

    Google Scholar 

  • Srivastava A, Rana V, Rana S, Singh D, Singh V (2011) Screening of rice and wheat cultivars for resistance against Root-knot Nematode, Meloidogyne graminicola (Golden and Birchfield ) in rice-wheat cropping system. J Rice Res 4:8–10

    Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hänßler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep [Internet]. 14 [cited 2016 Apr 6];16(10):668–673. Available from: http://link.springer.com/10.1007/s002990050299

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112(2):208–221

    Article  CAS  PubMed  Google Scholar 

  • Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM et al (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Su C-C, Cheng X-N, Zhai H-Q, Wan J-M (2002) [Detection and analysis of QTL for resistance to the brown planthopper, Nilaparvata lugens (Stål), in rice (Oryza sativa L.), using backcross inbred lines]. Yi Chuan Xue Bao [Internet]. [cited 2016 Apr 10];29(4):332–338. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11985267

  • Submergence I, Of T, Rice V, By C (2013) Improving submergence tolerance of vietnamese rice cultivar by molecular breeding [Internet]. J Plant Breed Genet. [cited 2016 Mar 27]. pp 157–168. Available from: http://escijournals.net/index.php/JPBG/article/view/318

  • Sun L-H, Wang C-M, Su C-C, Liu Y-Q, Zhai H-Q, Wan J-M (2006) Mapping and marker-assisted selection of a brown planthopper resistance gene bph2 in rice (Oryza sativa L.). Yi Chuan Xue Bao [Internet]. [cited 2016 Apr 10];33(8):717–723. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16939006

  • Sundaram R, Vishnupriya M, Biradar S (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica [Internet]. [cited 2016 Mar 21]; Available from: http://link.springer.com/article/10.1007/s10681-007-9564-6

  • Swamy BPM, Ahmed HU, Henry A, Mauleon R, Dixit S, Vikram P et al (2013) Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought. PLoS One [Internet] 8(5):e62795. Available from: http://dx.plos.org/10.1371/journal.pone.0062795

  • Takano-Kai N, Hui J, Kubo T, Sweeney M, Matsumoto T, Kanamori H et al (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182(4):1323–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M et al (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33(3):513–520

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: History, current status and future. Pest Manag Sci 61(3):246–257

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P et al (2015a) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24(1):109–122

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P et al (2015b) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res [Internet] 24(1):109–122 Available from: http://link.springer.com/10.1007/s11248-014-9822-z

    Article  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci [Internet]. [cited 2016 Mar 21]; Available from: http://www.sciencedirect.com/science/article/pii/S0168945299001338

  • Tang W, Chen H, Xu C, Li X, Lin Y, Zhang Q (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed [Internet]. [cited 2016 Apr 10]; Available from: http://link.springer.com/article/10.1007/s11032-006-9002-9

  • Teng P, Revilla I (1995) Technical issues in using crop loss data for research prioritization. Philipp J Crop Sci [Internet]. [cited 2016 Apr 10]; Available from: http://agris.fao.org/agris-search/search.do?recordID=PH9611366

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci [Internet]. Available from: http://www.frontiersin.org/Plant_Biotechnology/10.3389/fpls.2015.00084/abstract

  • Toriyama K, Sakurai Y, Ezuka A, Sakurai Y (1966) The breeding of resistant varieties for rice stripe virus. J Agric Sci 21:16–20

    Google Scholar 

  • Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2012) Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice (N Y) [Internet] 5(1):37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24280046

  • Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice ( Oryza sativa L.) under drought stress. TAG Theor Appl Genet [Internet]. [cited 2016 Mar 19];100(8):1197–202. Available from: http://link.springer.com/10.1007/s001220051424

  • Tsai AC, Wang C, Wang C, Tsai C (2006) Physiological characteristics of glufosinate resistance in rice. Article Weed Sci 54(4):634–640

    Article  CAS  Google Scholar 

  • Tu J, Datta K, Alam MF, Fan Y, Khush GS, Datta SK (1998) Expression and Function of a Hybrid Bt Toxin Gene in Transgenic Rice Conferring Resistance to Insect Pest. Plant Biotechnol [Internet]. [cited 2016 Apr 10];15(4):195–203. Available from: http://jlc.jst.go.jp/JST.Journalarchive/plantbiotechnology1997/15.195?from=Google

  • Tu J, Zhang G, Datta K, Xu C, He Y (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat … [Internet]. [cited 2016 Apr 10]; Available from: http://www.nature.com/nbt/journal/v18/n10/abs/nbt1000_1101.html

  • Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res [Internet]. [cited 2016 Mar 21];17(5):897–904. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2522301&tool=pmcentrez&rendertype=abstract

  • Ul Haq T, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funct Plant Biol [Internet]. CSIRO Publishing; [cited 2016 Mar 21];37(7):634. Available from: http://www.publish.csiro.au/view/journals/dsp_journal_fulltext.cfm?nid=102&f=FP09247

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H et al (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance in transgenic rice plants. TAG Theor Appl Genet [Internet]. [cited 2016 Apr 8];96(2):266–71. Available from: http://link.springer.com/10.1007/s001220050735

  • Varaprasad KS, Prasad JS, Chakrabarty SK, K A (2006) Global pest status of whitetip and ufra nematodes and their role in transbounadary movement of rice. In: International rice congress. New Delhi. p. 84.

    Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci [Internet]. [cited 2016 Apr 4];164(3):371–378. Available from: http://www.sciencedirect.com/science/article/pii/S0168945202004211

  • Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT et al (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet [Internet]. [cited 2016 Mar 19];120(1):177–190. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19841886

  • Vera Cruz M (1989) How variable is Xanthomonas campestris pv. oryzae? In: International Workshop on Bacterial Blight of Rice Los Banos, Laguna (Philippines) 14–18 Mar 1988 [Internet]. [cited 2016 Mar 30]. Available from: http://agris.fao.org/agris-search/search.do?recordID=PH19910099370

  • Verma V, Sharma S, Devi SV, Rajasubramaniam S, Dasgupta I (2012) Delay in virus accumulation and low virus transmission from transgenic rice plants expressing Rice tungro spherical virus RNA. Virus Genes [Internet]. [cited 2016 Mar 21];45(2):350–359. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22826155

  • Vikram P, Swamy BPM, Dixit S, Ahmed H, Teresa Sta Cruz M, Singh A et al (2011) qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet [Internet] 12(1):89. Available from: http://www.biomedcentral.com/1471-2156/12/89

  • Wang C (2006) The advance of the resistant breeding of rice stripe disease in Jiangsu province. Jiangsu Agric Sci 3:1–5

    CAS  Google Scholar 

  • Wang CM, Su CC, Ding XL, Zhai HQ, Wan JM (2004) QTLs linked to a gene cluster conferring resistance to sucking insect pests in rice (Oryza sativa L.). Rice Genet Newsl [Internet]. [cited 2016 Apr 10]; 21:23. Available from: http://shigen.nig.ac.jp/rice/oryzabase/asset/rgn/vol21/b23.html

  • Wang F-Z, Wang Q-B, Kwon S-Y, Kwak S-S, Su W (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol [Internet] 162(4):465–472 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0176161704002391

    Article  CAS  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet [Internet]. 40(11):1370–1374. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18820698

  • Wang P, Kelly S, Fouracre JP, Langdale JA (2013) Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75(4):656–670

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lee S, Wang J, Ma J, Bianco T, Ji Y (2014a) Current advances on genetic resistance to rice blast disease. In: Rice – germplasm, genetics and improvement [Internet]. InTech. Available from: http://www.intechopen.com/books/rice-germplasm-genetics-and-improvement/current-advances-on-genetic-resistance-to-rice-blast-disease

  • Wang C, Yang Y, Yuan X, Xu Q, Feng Y, Yu H et al (2014b) Genome-wide association study of blast resistance in indica rice. BMC Plant Biol [Internet]. 18 [cited 2016 Apr 6];14(1):311. Available from: http://www.biomedcentral.com/1471-2229/14/311/

  • Wang L, Czedik-Eysenberg A, Mertz R (2014c) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat … [Internet]. [cited 2016 Mar 29]; Available from: http://www.nature.com/nbt/journal/v32/n11/abs/nbt.3019.html

  • Wang W, Xia H, Yang X, Xu T, Si HJ, Cai XX et al (2014d) A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol 202(2):679–688

    Article  CAS  PubMed  Google Scholar 

  • Washio O, Toriyama K, Ezuka A, Sakurai Y (1968) Studies on the breeding of rice varieties resistant to stripe disease: II. Genetic Study on Resistance to Stripe Disease in Japanese Upland Rice. Ikushugaku zasshi [Internet]. 16 [cited 2016 Mar 21];18(2):96–101. Available from: https://www.jstage.jst.go.jp/article/jsbbs1951/18/2/18_2_96/_article

  • Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY et al (2010) DTH8 Suppresses Flowering in Rice, Influencing Plant Height and Yield Potential Simultaneously. Plant Physiol [Internet] 153(4):1747–1758. Available from: <Go to ISI>://000280566000025

    Google Scholar 

  • Weng X, Wang L, Wang J, Hu Y, Du H, Xu C et al (2014) Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol [Internet] 164(2):735–747 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=24390391

    Article  CAS  Google Scholar 

  • Westhoff P, Gowik U (2010) Evolution of C4 photosynthesis--looking for the master switch. Plant Physiol 154(2):598–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widawsky D, O’Toole J (1996) Prioritizing the rice research agenda for eastern India. Rice Res Asia Prog … [Internet]. [cited 2016 Mar 26]; Available from: https://books.google.com/books?hl=en&lr=&id=hwFHfwBsoZoC&oi=fnd&pg=PA109&dq=Prioritizing+rice+biotechnology+research+agenda+for+Eastern+India&ots=BcwrluE7sD&sig=YrW-hl9jlJK7OQc2FT0bH8CvWio

  • Wu SJ, Zhong H, Zhou Y, Zuo H, Zhou LH, Zhu JY et al (2009) Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica 165(3):557–565

    Article  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J et al (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7(1):1–10

    Article  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol [Internet]. [cited 2016 Mar 20];148(4):1938–1952. Available from: http://www.plantphysiol.org/content/148/4/1938

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet [Internet]. [cited 2016 Mar 21];115(1):35–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17426956

  • Xie Y, Wu R (1989) Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol 13:53–68

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol. ;61(FEBRUARY 2010):421–442

    Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996a) Expression of a late embryogenesis abundant protein gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol [Internet]. [cited 2016 Mar 21];110(1):249–257. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=157716&tool=pmcentrez&rendertype=abstract

  • Xu DP, Xue QZ, McElroy D, Mawal Y, Hilder VA, Wu R (1996b) Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Mol Breed [Internet]. [cited 2016 Apr 10];2(2):167–173. Available from: http://link.springer.com/article/10.1007/BF00441431

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature [Internet]. Nature Publishing Group; 10 [cited 2016 Mar 26];442(7103):705–708. Available from: http://dx.doi.org/10.1038/nature04920

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  CAS  PubMed  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant [Internet]. The Authors 2011. All rights reserved 4(2):319–330. Available from: http://dx.doi.org/10.1093/mp/ssq070

  • Yang DH, Kwak KJ, Kim MK, Park SJ, Yang K-Y, Kang H (2014) Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci [Internet]. [cited 2016 Mar 21];214:106–112. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24268168

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

  • Ye G-Y, Shu Q-Y, Yao H-W, Cui H-R, Cheng X-Y, Hu C et al (2001) Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol [Internet]. [cited 2016 Apr 10];94(1):271–276. Available from: http://dx.doi.org/10.1603/0022-0493-94.1.271

  • Ye GY, Yao HW, Shu QY, Cheng X, Hu C, Xia YW et al (2003) High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder , Cnaphalocrocis ! e ) under field conditions medinalis ( Guen e. Crop Prot [Internet]. [cited 2016 Apr 10];22:171–8. Available from: http://www.sciencedirect.com/science/article/pii/S0261219402001424

  • Yoshimura S, Umehara Y, Kurata N, Nagamura Y, Sasaki T, Minobe Y et al (1996) Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight resistance gene in rice. Theor Appl Genet [Internet]. [cited 2016 Mar 21];93(1–2):117–122. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24162208

  • Zha X, Luo X, Qian X, He G, Yang M, Li Y et al (2009) Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J 7(7):611–620

    Article  CAS  PubMed  Google Scholar 

  • Zhai W, Li X, Tian W, Zhou Y, Pan X, Cao S et al (2000) Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium-mediated system. Sci China C Life Sci 43(4):361–368.

    Google Scholar 

  • Zhai W, Chen C, Zhu X, Chen X, Zhang D, Li X et al (2004) Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice. Theor Appl Genet [Internet]. [cited 2016 Mar 21];109(3):534–542. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15088086

  • Zhang F, Xie J (2014) Genes and QTLs Resistant to Biotic and Abiotic Stresses from Wild Rice and Their Applications in Cultivar Improvements. Rice-Germplasm, Genet Improv [Internet]. 59–78. Available from: http://cdn.intechopen.com/pdfs-wm/46080.pdf

  • Zhang JZ, Creelman RA, Zhu J (2004) From laboratory to field. Using information from arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol [Internet]. 135(June):615–621. Available from: http://www.plantphysiol.org/cgi/doi/10.1104/pp.104.040295

  • Zhang Y-X, Wang Q, Jiang L, Liu L-L, Wang B-X, Shen Y-Y et al (2011) Fine mapping of qSTV11(KAS), a major QTL for rice stripe disease resistance. Theor Appl Genet [Internet]. May [cited 2016 Mar 21];122(8):1591–1604. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3082044&tool=pmcentrez&rendertype=abstract

  • Zhang Y-C, Yu Y, Wang C-Y, Li Z-Y, Liu Q, Xu J et al (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol [Internet] 31(9):848–852. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23873084

  • Zhou JR, Erdman JW (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr [Internet]. [cited 2016 Mar 18];35(6):495–508. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8777015

  • Zhu XG, Shan L, Wang Y, Quick WP (2010) C4 Rice - an Ideal Arena for Systems Biology Research. J Integr Plant Biol 52(8):762–770

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol [Internet]. [cited 2016 Feb 1];169(6):628–635. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22321692

  • Zou X, Qin Z, Zhang CC, Liu B, Liu J, Zhang CC et al (2015a) Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. J Exp Bot [Internet]. 66(22):erv417. Available from: http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/erv417

  • Zou X, Qin Z, Zhang C, Liu B, Liu J, Zhang C et al (2015b) Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. J Exp Bot [Internet]. 1 [cited 2016 Apr 10];66(22):7197–7209. Available from: http://jxb.oxfordjournals.org/content/early/2015/10/01/jxb.erv417.figures-only

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Vikram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biswal, A.K. et al. (2017). Role of Biotechnology in Rice Production. In: Chauhan, B., Jabran, K., Mahajan, G. (eds) Rice Production Worldwide. Springer, Cham. https://doi.org/10.1007/978-3-319-47516-5_18

Download citation

Publish with us

Policies and ethics