Skip to main content

BMPs in Orthopaedic Medicine: Promises and Challenges

  • Chapter
  • First Online:
Bone Morphogenetic Proteins: Systems Biology Regulators

Abstract

Over the last 50 years the concept of inducing bone formation, using biologically active signalling molecules, has evolved significantly. The most potent of these osteoinductive molecules remain the Bone Morphogenetic Proteins, with established role on the chemotaxis, proliferation and differentiation of mesenchymal progenitor cells to form cartilage and bone.

The initial enthusiasm following the synthetic production of BMP2 and BMP7 using recombinant gene technology, was followed by an expansion of their use “in-” and “off-label” in clinical practice, on parallel to a large number of basic science and translational medicine studies attempting to define further their effect.

The key role of BMPs in bone repair stimulated their widespread use in the orthopaedic discipline including the management of delayed union and non-union of fractures, bone defects, open fractures, fusion of joints, spinal fusions, as well as treatment of osteoarthritis and intervertebral disc cartilage degeneration. It is quite evident that rhBMPs in humans have a different dose–response relationship in comparison to animal species, as well as that the final outcome of their use is also relevant to the specifics of their carrier and delivery system, their containment, the timing of their application, as well as the state of the recipient host local environment. The different effect of different BMPs, and their variable interaction with inhibiting molecules and negative feedback mechanisms, are nowadays better understood, widening further the horizon of contemporary research of bone, as well as of cartilage regeneration.

The reputation of BMPs has been negatively affected lately due to the recent redraw from the market of their recombinant synthetic forms, which is however attributed mostly to strategic commercial planning rather than their performance. New osteoinductive molecules emerge attempting to fill in the gap, whilst the challenge of evidence based clinical practice remains.

This article presents the contemporary understanding, as well as a summary of selected published evidence on the roles of the BMPs in bone and cartilage regeneration.

Conflict of Interest

No funds were received in support of this study. No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urist M (1965) Bone formation by autoinduction. Science 12:893–899

    Article  Google Scholar 

  2. Giannoudis PV, Kanakaris NK, Einhorn TA (2007) Interaction of bone morphogenetic proteins with cells of the osteoclast lineage: review of the existing evidence. Osteoporos Int 18:1565–1581

    Article  CAS  PubMed  Google Scholar 

  3. Kanakaris NK, Calori GM, Verdonk R et al (2008) Application of BMP-7 to tibial nonunions: a 3-year multicenter experience. Injury 39(Suppl 2):S83–S90

    Article  PubMed  Google Scholar 

  4. Kanakaris NK, Paliobeis C, Manidakis N, Giannoudis PV (2007) Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. Injury 38(Suppl 2):S65–S75

    Article  PubMed  Google Scholar 

  5. Papathanasopoulos A, Giannoudis PV (2008) Biological considerations of mesenchymal stem cells and endothelial progenitor cells. Injury 39(Suppl 2):S21–S32

    Article  PubMed  Google Scholar 

  6. Termaat MF, Den Boer FC, Bakker FC, Patka P, Haarman HJ (2005) Bone morphogenetic proteins: development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am 87:1367–1378

    CAS  PubMed  Google Scholar 

  7. Uludag H, Gao T, Porter TJ, Friess W, Wozney JM (2001) Delivery systems for BMPs: factors contributing to protein retention at an application site. J Bone Joint Surg Am 83-A(Suppl 1, Pt 2):S128–S135

    Google Scholar 

  8. Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE (2002) Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop 395:110–120

    Article  Google Scholar 

  9. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    Article  CAS  PubMed  Google Scholar 

  10. Axelrad TW, Steen B, Lowenberg DW, Creevy WR, Einhorn TA (2008) Heterotopic ossification after the use of commercially available recombinant human bone morphogenetic proteins in four patients. J Bone Joint Surg Br 90(12):1617–1622

    Article  CAS  PubMed  Google Scholar 

  11. Stylios G, Wan T, Giannoudis P (2007) Present status and future potential of enhancing bone healing using nanotechnology. Injury 38(Suppl 1):S63–S74

    Article  PubMed  Google Scholar 

  12. Mont MA, Ragland PS, Biggins B et al (2004) Use of bone morphogenetic proteins for musculoskeletal applications. An overview. J Bone Joint Surg Am 86(Suppl 2):41–55

    Article  PubMed  Google Scholar 

  13. Schmidmaier G, Schwabe P, Strobel C, Wildemann B (2008) Carrier systems and application of growth factors in orthopaedics. Injury 39(Suppl 2):S37–S43

    Article  PubMed  Google Scholar 

  14. Glaser DL, Economides AN, Wang L et al (2003) In vivo somatic cell gene transfer of an engineered noggin mutein prevents BMP4-induced heterotopic ossification. J Bone Joint Surg Am 85:2332–2342

    Article  PubMed  Google Scholar 

  15. Giannoudis PV, Einhorn TA (2009) Bone morphogenetic proteins in musculoskeletal medicine. Int J Care Injured 40:S3, S1–S3

    Google Scholar 

  16. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83-A(Suppl 1(Pt 2)):S151–S158

    Google Scholar 

  17. Calori GM, D'Avino M, Tagliabue L, Albisetti W, d'Imporzano M, Peretti G (2006 Sep) An ongoing research for evaluation of treatment with BMPs or AGFs in long bone non-union: protocol description and preliminary results. Injury 37(Suppl 3):S43–S50

    Article  PubMed  Google Scholar 

  18. Ekrol I, Hajducka C, Court-Brown C, McQueen MM (2008 Sep) A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius. Injury 39(Suppl 2):S73–S82. doi:10.1016/S0020-1383(08)70018-4

    Article  PubMed  Google Scholar 

  19. Cook SD (1999 Jul) Preclinical and clinical evaluation of osteogenic protein-1 (BMP-7) in bony sites. Orthopedics 22(7):669–671

    CAS  PubMed  Google Scholar 

  20. Chen G, Yang J, Xu H, Wang M (2000) The application of NNB/BMP complex in the treatment of ununited-tibia fracture. Orthop J China (Zhongguo Jiaoxing Waike Zazhi) 7:758–761. doi:10.3969/j.issn.1005-8478.2000.08.009

    Google Scholar 

  21. van Engen AK, Vinken A, Andrew G. The cost-effectiveness of Osigraft (Osteogenic Protein 1) in the treatment of tibial non-unions in the UK and Germany [poster]. 6th European Federation of National Associations of Orthopaedics and Traumatology (EFORT) Congress; 2003 June 4–10; Helsinki (FI).

    Google Scholar 

  22. Dimitriou R, Dahabreh Z, Katsoulis E, Matthews SJ, Branfoot T, Giannoudis PV (2005) Application of recombinant BMP-7 on persistent upper and lower limb non-unions. Injury 36(Suppl 4):S51–S59

    Article  PubMed  Google Scholar 

  23. Kanakaris NK, Lasanianos N, Calori GM, Verdonk R, Blokhuis TJ, Cherubino P, De Biase P, Giannoudis PV (2009) Application of bone morphogenetic proteins to femoral non-unions: a 4-year multicentre experience. Injury 40(Suppl 3):S54–S61

    Article  PubMed  Google Scholar 

  24. Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7: the UK perspective. Injury 36(Suppl 3):S47–S50

    Article  PubMed  Google Scholar 

  25. Desmyter S, Goubau Y, Benahmed N, de Wever A, Verdonk R (2008) The role of bone morphogenetic protein-7 (Osteogenic Protein-1) in the treatment of tibial fracture non-unions. An overview of the use in Belgium. Acta Orthop Belg 74(4):534–537

    PubMed  Google Scholar 

  26. Govender S, Csimma C, Genant HK et al (2002) (BESTT) Study Group. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients; BMP-2 evaluation in surgery for tibial trauma. J Bone Joint Surg Am 84-A(12):2123–2134

    Article  PubMed  Google Scholar 

  27. McKee MD, Schemitsch EH, Waddell JP et al (2002). The effect of human recombinant bone morphogenic protein (RHBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial. In: Proceedings of the 18th annual meeting of the Orthopaedic Trauma Association; Oct 11–13; Toronto Ontario, Canada, pp. 157–8

    Google Scholar 

  28. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD, Valentin-Opran A (2006) BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group, Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 88(7):1431–1441

    PubMed  Google Scholar 

  29. Alt V, Heissel A (2006) Economic considerations for the use of recombinant human bone morphogenetic protein-2 in open tibial fractures in Europe: the German model. Curr Med Res Opin 22(Suppl 1):S19–S22

    Article  PubMed  Google Scholar 

  30. Kanakaris NK, Mallina R, Calori GM, Kontakis G, Giannoudis PV (2009) Use of bone morphogenetic proteins in arthrodesis: clinical results. Injury 40(Suppl 3):S62–S66

    Article  PubMed  Google Scholar 

  31. Fourman MS, Borst EW, Bogner E, Rozbruch SR, Fragomen AT (2014) Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin Orthop Relat Res 472(2):732–739

    Article  PubMed  Google Scholar 

  32. DeVries JG, Nguyen M, Berlet GC, Hyer CF (2012) The effect of recombinant bone morphogenetic protein-2 in revision tibiotalocalcaneal arthrodesis: utilization of the Retrograde Arthrodesis Intramedullary Nail database. J Foot Ankle Surg 51:426–432

    Article  PubMed  Google Scholar 

  33. Michielsen J, Sys J, Rigaux A, Bertrand C (2013) The effect of recombinant human bone morphogenetic protein-2 in single-level posterior lumbar interbody arthrodesis. J Bone Joint Surg Am 95(10):873–880

    Article  CAS  PubMed  Google Scholar 

  34. Dimar JR, Glassman SD, Burkus JK, Pryor PW, Hardacker JW et al (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91:1377–1386

    Article  PubMed  Google Scholar 

  35. Glassman SD, Dimar JR, Burkus K, Hardacker JW, Pryor PW, Boden SD, Carreon LY (2007) The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers. Spine (Phila Pa 1976). 32(15):1693–1698

    Article  Google Scholar 

  36. Crandall DG, Revella J, Patterson J, Huish E, Chang M, McLemore R (2013) Transforaminal lumbar interbody fusion with rhBMP-2 in spinal deformity, spondylolisthesis, and degenerative disease – part 2: BMP dosage-related complications and long-term outcomes in 509 patients. Spine (Phila Pa 1976) 38(13):1137–1145

    Article  Google Scholar 

  37. RJ H, Alexander D, Bailey S, Mahood J, Abraham E, McBroom R, Jodoin A, Fisher C (2013) rhBMP-2 for posterolateral instrumented lumbar fusion: a multicenter prospective randomized controlled trial. Spine (Phila Pa 1976) 38(25):2139–2148

    Article  Google Scholar 

  38. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937):332–336

    Article  CAS  PubMed  Google Scholar 

  39. de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19(5):389–394

    Article  PubMed  Google Scholar 

  40. Reddi AH (2003) Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration. Ann Rheum Dis 62(Suppl 2):ii73–ii78

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14(1):13–29

    Article  CAS  PubMed  Google Scholar 

  42. Roach HI, Aigner T, Soder S, Haag J, Welkerling H (2007) Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets 8(2):271–282

    Article  CAS  PubMed  Google Scholar 

  43. Sandell LJ (2007) Anabolic factors in degenerative joint disease. Curr Drug Targets 8(2):359–365

    Article  CAS  PubMed  Google Scholar 

  44. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, Poole AR (2002) Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 46(8):2087–2094

    Article  CAS  PubMed  Google Scholar 

  45. Tchetina EV, Squires G, Poole AR (2005) Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 32(5):876–886

    CAS  PubMed  Google Scholar 

  46. Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM (2003) Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 257(2):292–301

    Article  CAS  PubMed  Google Scholar 

  47. Pan Q, Yu Y, Chen Q, Li C, Wu H, Wan Y, Ma J, Sun F (2008) Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol 217(1):228–241

    Article  CAS  PubMed  Google Scholar 

  48. Pan Q, Wu Y, Lin T, Yao H, Yang Z, Gao G, Song E, Shen H (2009) Bone morphogenetic protein-2 induces chromatin remodeling and modification at the proximal promoter of Sox9 gene. Biochem Biophys Res Commun 379(2):356–361

    Article  CAS  PubMed  Google Scholar 

  49. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44

    Article  CAS  PubMed  Google Scholar 

  50. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22(4):233–241

    Article  CAS  PubMed  Google Scholar 

  51. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128(22):4523–4534

    CAS  PubMed  Google Scholar 

  52. Zhao L, Li G, Zhou GQ (2009) SOX9 directly binds CREB as a novel synergism with the PKA pathway in BMP-2-induced osteochondrogenic differentiation. J Bone Miner Res 24(5):826–836

    Article  CAS  PubMed  Google Scholar 

  53. Aaijman A, D'Souza RN, Bronckers AL, Goei SW, Burger EH (1997) OP-1 (BMP-7) affects mRNA expression of type I, II, X collagen, and matrix Gla protein in ossifying long bones in vitro. J Bone Miner Res 12(11):1815–1823

    Article  Google Scholar 

  54. Chubinskaya S, Segalite D, Pikovsky D, Hakimiyan AA, Rueger DC (2008) Effects induced by BMPS in cultures of human articular chondrocytes: comparative studies. Growth Factors 26(5):275–283

    Article  CAS  PubMed  Google Scholar 

  55. Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D'Augusta DA, Beckwith K, Morris EA (2000) Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 82(2):151–160

    Article  CAS  PubMed  Google Scholar 

  56. Uusitalo H, Hiltunen A, Ahonen M, Gao TJ, Lefebvre V, Harley V, Kahari VM, Vuorio E (2001) Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res 16(10):1837–1845

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki T, Bessho K, Fujimura K, Okubo Y, Segami N, Iizuka T (2002) Regeneration of defects in the articular cartilage in rabbit temporomandibular joints by bone morphogenetic protein-2. Br J Oral Maxillofac Surg 40(3):201–206

    Article  CAS  PubMed  Google Scholar 

  58. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2, −4, and −6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320(2):269–276

    Article  CAS  PubMed  Google Scholar 

  59. Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, Takaoka K, Yoshikawa H (2005) A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage 13(5):405–417

    Article  PubMed  Google Scholar 

  60. Yeh TT, Wu SS, Lee CH, Wen ZH, Lee HS, Yang Z, Nimni ME, Han B (2007) The short-term therapeutic effect of recombinant human bone morphogenetic protein-2 on collagenase-induced lumbar facet joint osteoarthritis in rats. Osteoarthritis Cartilage 15(12):1357–1366

    Article  PubMed  Google Scholar 

  61. Majumdar MK, Chockalingam PS, Bhat RA, Sheldon R, Keohan C, Blanchet T, Glasson S, Morris EA (2008) Immortalized mouse articular cartilage cell lines retain chondrocyte phenotype and respond to both anabolic factor BMP-2 and pro-inflammatory factor IL-1. J Cell Physiol 215(1):68–76

    Article  CAS  PubMed  Google Scholar 

  62. Tokuhara Y, Wakitani S, Imai Y, Kawaguchi A, Fukunaga K, Kim M, Kadoya Y, Takaoka K (2010) Repair of experimentally induced large osteochondral defects in rabbit knee with various concentrations of Escherichia coli-derived recombinant human bone morphogenetic protein-2. Int Orthop 34(5):761–767

    Article  PubMed  Google Scholar 

  63. Mimura T, Imai S, Okumura N, Li L, Nishizawa K, Araki S, Ueba H, Kubo M, Mori K, Matsusue Y (2011) Spatiotemporal control of proliferation and differentiation of bone marrow-derived mesenchymal stem cells recruited using collagen hydrogel for repair of articular cartilage defects. J Biomed Mater Res B Appl Biomater 98(2):360–368

    Article  PubMed  CAS  Google Scholar 

  64. Yang HS, La WG, Bhang SH, Kim HJ, Im GI, Lee H, Park JH, Kim BS (2011) Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A 17(13–14):1809–1818

    Article  CAS  PubMed  Google Scholar 

  65. Aulin C, Jensen-Waern M, Ekman S, Hagglund M, Engstrand T, Hilborn J, Hedenqvist P (2013) Cartilage repair of experimentally 11 induced osteochondral defects in New Zealand White rabbits. Lab Anim 47(1):58–65

    Article  CAS  PubMed  Google Scholar 

  66. Flechtenmacher J, Huch K, Thonar EJ, Mollenhauer JA, Davies SR, Schmid TM, Puhl W, Sampath TK, Aydelotte MB, Kuettner KE (1996) Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis Rheum 39(11):1896–1904

    Article  CAS  PubMed  Google Scholar 

  67. Nishida Y, D'Souza AL, Thonar EJ, Knudson W (2000) Stimulation of hyaluronan metabolism by interleukin-1alpha in human articular cartilage. Arthritis Rheum 43(6):1315–1326

    Article  CAS  PubMed  Google Scholar 

  68. Loeser RF, Pacione CA, Chubinskaya S (2003) The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum 48(8):2188–2196

    Article  CAS  PubMed  Google Scholar 

  69. Fan Z, Chubinskaya S, Rueger DC, Bau B, Haag J, Aigner T (2004) Regulation of anabolic and catabolic gene expression in normal and osteoarthritic adult human articular chondrocytes by osteogenic protein-1. Clin Exp Rheumatol 22(1):103–106

    CAS  PubMed  Google Scholar 

  70. Lietman SA, Yanagishita M, Sampath TK, Reddi AH (1997) Stimulation of proteoglycan synthesis in explants of porcine articular cartilage by recombinant osteogenic protein-1 (bone morphogenetic protein-7). J Bone Joint Surg Am 79(8):1132–1137

    Article  CAS  PubMed  Google Scholar 

  71. Grgic M, Jelic M, Basic V, Basic N, Pecina M, Vukicevic S (1997) Regeneration of articular cartilage defects in rabbits by osteogenic protein-1 (bone morphogenetic protein-7). Acta Med Croatica 51(1):23–27

    CAS  PubMed  Google Scholar 

  72. Louwerse RT, Heyligers IC, Klein-Nulend J, Sugihara S, van Kampen GP, Semeins CM, Goei SW, de Koning MH, Wuisman PI, Burger EH (2000) Use of recombinant human osteogenic protein-1 for the repair of subchondral defects in articular cartilage in goats. J Biomed Mater Res 49(4):506–516

    Article  CAS  PubMed  Google Scholar 

  73. Cook SD, Patron LP, Salkeld SL, Rueger DC (2003) Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am 85-A(Suppl 3):116–123

    Article  Google Scholar 

  74. Jelic M, Pecina M, Haspl M, Kos J, Taylor K, Maticic D, McCartney J, Yin S, Rueger D, Vukicevic S (2001) Regeneration of articular cartilage chondral defects by osteogenic protein-1 (bone morphogenetic protein-7) in sheep. Growth Factors 19(2):101–113

    Article  CAS  PubMed  Google Scholar 

  75. Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR, Sittinger M, Gross G, Haupl T (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46(1):149–162

    Article  CAS  PubMed  Google Scholar 

  76. Merrihew C, Kumar B, Heretis K, Rueger DC, Kuettner KE, Chubinskaya S (2003) Alterations in endogenous osteogenic protein-1 with degeneration of human articular cartilage. J Orthop Res 21(5):899–907

    Article  CAS  PubMed  Google Scholar 

  77. Chubinskaya S, Hakimiyan A, Pacione C, Yanke A, Rappoport L, Aigner T, Rueger DC, Loeser RF (2007) Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads. Osteoarthritis Cartilage 15(4):421–430

    Article  CAS  PubMed  Google Scholar 

  78. Im HJ, Pacione C, Chubinskaya S, Van Wijnen AJ, Sun Y, Loeser RF (2003) Inhibitory effects of insulin-like growth factor-1 and osteogenic protein-1 on fibronectin fragment- and interleukin-1beta-stimulated matrix metalloproteinase-13 expression in human chondrocytes. J Biol Chem 278(28):25386–25394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shimmin A, Young D, O’Leary S, Shih MS, Rueger DC, Walsh WR: Growth factor augmentation of an ovine mosaicplasty model. Trans ICRS. 2003; 2003.

    Google Scholar 

  80. Hidaka C, Goodrich LR, Chen CT, Warren RF, Crystal RG, Nixon AJ (2003) Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res 21(4):573–583

    Article  CAS  PubMed  Google Scholar 

  81. Nishida Y, Knudson CB, Knudson W (2004) Osteogenic Protein-1 inhibits matrix depletion in a hyaluronan hexasaccharide-induced model of osteoarthritis. Osteoarthritis Cartilage 12(5):374–382

    Article  PubMed  Google Scholar 

  82. Loeser RF, Yammani RR, Carlson CS, Chen H, Cole A, Im HJ, Bursch LS, Yan SD (2005) Articular chondrocytes express the receptor for advanced glycation end products: Potential role in osteoarthritis. Arthritis Rheum 52(8):2376–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M (2006) Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage 14(11):1126–1135

    Article  CAS  PubMed  Google Scholar 

  84. Badlani N, Inoue A, Healey R, Coutts R, Amiel D (2008) The protective effect of OP-1 on articular cartilage in the development of osteoarthritis. Osteoarthritis Cartilage 16(5):600–606

    Article  CAS  PubMed  Google Scholar 

  85. Hurtig M, Chubinskaya S, Dickey J, Rueger D (2009) BMP-7 protects against progression of cartilage degeneration after impact injury. J Orthop Res 27(5):602–611

    Article  CAS  PubMed  Google Scholar 

  86. Chubinskaya S, Otten L, Soeder S, Borgia JA, Aigner T, Rueger DC, Loeser RF (2011) Regulation of chondrocyte gene expression by osteogenic protein-1. Arthritis Res Ther 13(2):R55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krawczak DA, Westendorf JJ, Carlson CS, Lewis JL (2009) Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability. Tissue Eng Part A 15(6):1247–1255

    Article  CAS  PubMed  Google Scholar 

  88. Chen AL, Fang C, Liu C, Leslie MP, Chang E, Di Cesare PE (2004) Expression of bone morphogenetic proteins, receptors, and tissue inhibitors in human fetal, adult, and osteoarthritic articular cartilage. J Orthop Res 22(6):1188–1192

    Article  CAS  PubMed  Google Scholar 

  89. Nakase T, Miyaji T, Tomita T, Kaneko M, Kuriyama K, Myoui A, Sugamoto K, Ochi T, Yoshikawa H (2003) Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthritis Cartilage 11(4):278–284

    Article  CAS  PubMed  Google Scholar 

  90. Fukui N, Zhu Y, Maloney WJ, Clohisy J, Sandell LJ (2003) Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am 85-A(Suppl 3):59–66

    Article  Google Scholar 

  91. Dell'Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O'Dowd J, Pitzalis C (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8(5):R139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB (2003) Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum 48(9):2501–2508

    Article  CAS  PubMed  Google Scholar 

  93. Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK, Lou Y, van Wijnen AJ, Stein JL, Stein GS et al (2008) Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 283(13):8412–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs 189(1–4):133–137

    CAS  PubMed  Google Scholar 

  95. Leboy P, Grasso-Knight G, D'Angelo M, Volk SW, Lian JV, Drissi H, Stein GS, SL A (2001) Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am 83-A Suppl 1(Pt 1):S15–S22

    CAS  PubMed  Google Scholar 

  96. Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16(3):247–252

    Article  CAS  PubMed  Google Scholar 

  97. Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280(5368):1455–1457

    Article  CAS  PubMed  Google Scholar 

  98. Pizette S, Niswander L (2000) BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 219(2):237–249

    Article  CAS  PubMed  Google Scholar 

  99. Lories RJ, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP (2006) Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis Rheum 54(6):1736–1746

    Article  CAS  PubMed  Google Scholar 

  100. Nakashima A, Tamura M (2006) Regulation of matrix metalloproteinase-13 and tissue inhibitor of matrix metalloproteinase-1 gene expression by WNT3A and bone morphogenetic protein-2 in osteoblastic differentiation. Front Biosci 11:1667–1678

    Article  CAS  PubMed  Google Scholar 

  101. Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54(11):3533–3544

    Article  CAS  PubMed  Google Scholar 

  102. Aigner T, Zien A, Gehrsitz A, Gebhard PM, McKenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44(12):2777–2789

    Article  CAS  PubMed  Google Scholar 

  103. Hermansson M, Sawaji Y, Bolton M, Alexander S, Wallace A, Begum S, Wait R, Saklatvala J (2004) Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes. J Biol Chem 279(42):43514–43521

    Article  CAS  PubMed  Google Scholar 

  104. Gamer LW, Ho V, Cox K, Rosen V (2008) Expression and function of BMP3 during chick limb development. Dev Dyn 237(6):1691–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Allendorph GP, Isaacs MJ, Kawakami Y, Izpisua Belmonte JC, Choe S (2007) BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry 46(43):12238–12247

    Article  CAS  PubMed  Google Scholar 

  106. Blaney Davidson EN, Vitters EL, van der Kraan PM, van den Berg WB (2006) Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis 65(11):1414–1421

    Article  CAS  PubMed  Google Scholar 

  107. Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB, van der Kraan PM (2009) Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 182(12):7937–7945

    Article  CAS  PubMed  Google Scholar 

  108. Bruckner P, van der Rest M (1994) Structure and function of cartilage collagens. Microsc Res Tech 28(5):378–384

    Article  CAS  PubMed  Google Scholar 

  109. Vikkula M, Metsaranta M, Ala-Kokko L (1994) Type II collagen mutations in rare and common cartilage diseases. Ann Med 26(2):107–114

    Article  CAS  PubMed  Google Scholar 

  110. Freisinger P, Ala-Kokko L, LeGuellec D, Franc S, Bouvier R, Ritvaniemi P, Prockop DJ, Bonaventure J (1994) Mutation in the COL2A1 gene in a patient with hypochondrogenesis. Expression of mutated COL2A1 gene is accompanied by expression of genes for type I procollagen in chondrocytes. J Biol Chem 269(18):13663–13669

    CAS  PubMed  Google Scholar 

  111. Peeters M, Detiger SE, Karfeld-Sulzer LS, Smit TH, Yayon A, Weber FE, Helder MN (2015) BMP-2 and BMP-2/7 heterodimers conjugated to a fibrin/hyaluronic acid hydrogel in a large animal model of mild intervertebral disc degeneration. Biores Open Access 4(1):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takegami K, An HS, Kumano F, Chiba K, Thonar EJ, Singh K, Masuda K (2005) Osteogenicprotein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5(3):231–238

    Article  PubMed  Google Scholar 

  113. Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, Schmid T, Thonar E (2003) Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 21(5):922–930

    Article  CAS  PubMed  Google Scholar 

  114. Imai Y, Miyamoto K, An HS, Thonar EJ, Andersson GB, Masuda K (2007) Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine (Phila Pa 1976) 32(12):1303–1309

    Article  Google Scholar 

  115. Leckie SK, Bechara BP, Hartman RA, Sowa GA, Woods BI, Coelho JP, Witt WT, Dong QD, Bowman BW, Bell KM et al (2012) Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an invivo rabbit model. Spine J 12(1):7–20

    Article  PubMed  Google Scholar 

  116. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An HS (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine (Phila Pa 1976) 31(7):742–754

    Article  Google Scholar 

  117. Kawakami M, Matsumoto T, Hashizume H, Kuribayashi K, Chubinskaya S, Yoshida M (2005) Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat. Spine (Phila Pa 1976) 30(17):1933–1939

    Article  Google Scholar 

  118. Huang KY, Yan JJ, Hsieh CC, Chang MS, Lin RM (2007) The in vivo biological effects of intradiscal recombinant human bone morphogenetic protein-2 on the injured intervertebral disc: an animal experiment. Spine (Phila Pa 1976) 32(11):1174–1180

    Article  Google Scholar 

  119. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976) 30(1):25–31 discussion 31-22

    Article  Google Scholar 

  120. Imai Y, Okuma M, An HS, Nakagawa K, Yamada M, Muehleman C, Thonar E, Masuda K (2007) Restoration of disc height loss by recombinant human osteogenic protein-1injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase ABC. Spine (Phila Pa 1976) 32(11):1197–1205

    Article  Google Scholar 

  121. Chubinskaya S, Kawakami M, Rappoport L, Matsumoto T, Migita N, Rueger DC (2007) Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res 25(4):517–530

    Article  CAS  PubMed  Google Scholar 

  122. Woods BI, Vo N, Sowa G, Kang JD (2011) Gene therapy for intervertebral disk degeneration. Orthop Clin North Am 42(4):563–574

    Article  PubMed  Google Scholar 

  123. Jeong CG, Zhang H, Hollister SJ (2012) Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. J Biomed Mater Res A 100(8):2088–2096

    Article  PubMed  CAS  Google Scholar 

  124. Than KD, Rahman SU, Vanaman MJ, Wang AC, Lin CY, Zhang H, La Marca F, Park P (2012) Bone morphogenetic proteins and degenerative disk disease. Neurosurgery 70(4):996–1002 discussion 1002

    Article  PubMed  Google Scholar 

  125. Hunter CJ, Matyas JR, Duncan NA (2004) Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 205(5):357–362

    Article  PubMed  PubMed Central  Google Scholar 

  126. Balk ML, Bray J, Day C et al (1997) Effect of rhBMP-2 on the osteogenic potential of bone marrow stromal cells from an osteogenesis imperfecta mouse (oim). Bone 21:7–15

    Article  CAS  PubMed  Google Scholar 

  127. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl. 4):S3–S6

    Article  Google Scholar 

  128. Pountos I, Panteli M, Georgouli T, Giannoudis PV (2014 Nov) Neoplasia following use of BMPs: is there an increased risk? Expert Opin Drug Saf 13(11):1525–1534

    Article  CAS  PubMed  Google Scholar 

  129. Mognetti B, Marino S, Barberis A, Martin AS, Bala Y, Di Carlo F, Boivin G, Barbos MP (2011) Experimental stimulation of bone healing with teriparatide: histomorphometric and microhardness analysis in a mouse model of closed fracture. Calcif Tissue Int 89(2):163–171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter V. Giannoudis MB, BSc, MD, FACS, FRCS (Eng) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Giannoudis, P.V., Kanakaris, N.K. (2017). BMPs in Orthopaedic Medicine: Promises and Challenges. In: Vukicevic, S., Sampath, K. (eds) Bone Morphogenetic Proteins: Systems Biology Regulators. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-47507-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47507-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47505-9

  • Online ISBN: 978-3-319-47507-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics