Skip to main content

Novel In Vitro Assay Models to Study Osteogenesis and Chondrogenesis for Human Skeletal Disorders

  • Chapter
  • First Online:
Bone Morphogenetic Proteins: Systems Biology Regulators

Part of the book series: Progress in Inflammation Research ((PIR))

  • 753 Accesses

Abstract

Bone morphogenetic proteins (BMPs)/growth and differentiation factors (GDFs) are involved not only in the physiological development of skeletal tissues but also in the pathological conditions in the tissues. Osteogenesis and chondrogenesis during skeletal formation can be studied in vitro using cell lines and primary cultured cells, which are able to differentiate into osteoblasts and chondrocytes in response to BMP/GDF signaling. These in vitro model systems have been applied to the examination of molecular mechanisms of skeletal disorders related to BMPs/GDFs. Moreover, these in vitro model systems are useful for the development of novel treatments for the disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin L, Li X (2013) Growth differentiation factor 5 regulation in bone regeneration. Curr Pharm Des 19(19):3364–3373

    Article  CAS  PubMed  Google Scholar 

  2. Pignatti E, Zeller R, Zuniga A (2014) To BMP or not to BMP during vertebrate limb bud development. Semin Cell Dev Biol 32:119–127

    Article  CAS  PubMed  Google Scholar 

  3. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  PubMed  Google Scholar 

  4. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242(4885):1528–1534

    Article  CAS  PubMed  Google Scholar 

  5. Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM (1990 Dec) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci U S A 87(24):9843–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sampath TK, Coughlin JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, Ozkaynak E, Oppermann H, Rueger DC (1990) Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265(22):13198–13205

    CAS  PubMed  Google Scholar 

  7. Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, White KH, Coughlin JE, Tucker MM, Pang RH et al (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 267(28):20352–20362

    CAS  PubMed  Google Scholar 

  8. Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, Kozak CA, Reddi AH, Moos M Jr (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 269(45):28227–28234

    CAS  PubMed  Google Scholar 

  9. Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21(4):393–411

    Article  CAS  PubMed  Google Scholar 

  10. Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8(3):147–159

    Article  CAS  PubMed  Google Scholar 

  11. Gómez-Picos P, Eames BF (2015) On the evolutionary relationship between chondrocytes and osteoblasts. Front Genet 6:297

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakamura I, Takahashi N, Jimi E, Udagawa N, Suda T (2012 Apr) Regulation of osteoclast function. Mod Rheumatol 22(2):167–177

    Article  PubMed  Google Scholar 

  13. Kobayashi Y, Uehara S, Koide M, Takahashi N (2015 Jul 1) The regulation of osteoclast differentiation by Wnt signals. Bonekey Rep 4:713

    Article  PubMed  PubMed Central  Google Scholar 

  14. Somoza RA, Welter JF, Correa D, Caplan AI (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20(6):596–608

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang Y, Tuan RS (2015) Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol 11(4):206–212

    Article  PubMed  Google Scholar 

  16. Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M (2015) Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 70:28–36

    Article  CAS  PubMed  Google Scholar 

  17. Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180

    Article  CAS  PubMed  Google Scholar 

  18. Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172(1):295–299

    Article  CAS  PubMed  Google Scholar 

  19. Yamaguchi A, Katagiri T, Ikeda T, Wozney JM, Rosen V, Wang EA, Kahn AJ, Suda T, Yoshiki S (1991) Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol 113(3):681–687

    Article  CAS  PubMed  Google Scholar 

  20. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127(6 Pt 1):1755–1766

    Article  CAS  PubMed  Google Scholar 

  21. Rosen V, Nove J, Song JJ, Thies RS, Cox K, Wozney JM (1994) Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes. J Bone Miner Res 9(11):1759–1768

    Article  CAS  PubMed  Google Scholar 

  22. Sampath TK, Muthukumaran N, Reddi AH (1987) Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc Natl Acad Sci U S A 84(20):7109–7113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the 14 types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A(8):1544–1552 Erratum in: J Bone Joint Surg Am. 2004 Jan;86-A(1):141

    Article  PubMed  Google Scholar 

  24. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, Vanichakarn P, Park JY, Li Y, Haydon RC, He TC (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11(17):1312–1320

    Article  CAS  PubMed  Google Scholar 

  25. Katagiri T, Suda T, Miyazozo K (2008) The bone morphogenetic proteins. In: Miyazono K, Derynck R (eds) The TGF-βFamily. Cold Spring Harbor Press, New York, pp. 121–149

    Google Scholar 

  26. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51

    Article  CAS  PubMed  Google Scholar 

  27. Katagiri T (2010) Heterotopic bone formation induced by bone morphogenetic protein signaling: fibrodysplasia ossificans progressiva. J Oral Biosci 52:33–41

    Article  CAS  Google Scholar 

  28. Katagiri T (2012) Recent topics in fibrodysplasia ossificans progressiva. J Oral Biosci 54:119–123

    Article  CAS  Google Scholar 

  29. Katagiri T, Tsukamoto S (2013) The unique activity of bone morphogenetic proteins in bone: a critical role of the Smad signaling pathway. Biol Chem 394:703–714

    Article  CAS  PubMed  Google Scholar 

  30. Katagiri T, Tsukamoto S, Osawa K, and Kokabu S. Ligand-receptor interactions and their implications in delivering certain signaling for bone regeneration. In A tissue regeneration approach to bone and cartilage repair, Mechanical Engineering Series,Zreiqat H Rosen V and Dunstan C, editors. Springer, London, pp 1–15, 2014.

    Google Scholar 

  31. Katagiri T, Osawa K, Tsukamoto S, Fujimoto M, Miyamoto A, Mizuta T (2015) Bone morphogenetic protein-induced heterotopic bone formation: what have we learned from the history of a half century? Jpn Dent Sci Rev 51:42–50

    Article  Google Scholar 

  32. Namiki M, Akiyama S, Katagiri T, Suzuki A, Ueno N, Yamaji N, Rosen V, Wozney JM, Suda T (1997) A kinase domain-truncated type I receptor blocks bone morphogenetic protein-2-induced signal transduction in C2C12 myoblasts. J Biol Chem 272(35):22046–22052

    Article  CAS  PubMed  Google Scholar 

  33. Akiyama S, Katagiri T, Namiki M, Yamaji N, Yamamoto N, Miyama K, Shibuya H, Ueno N, Wozney JM, Suda T (1997) Constitutively active BMP type I receptors transduce BMP-2 signals without the ligand in C2C12 myoblasts. Exp Cell Res 235(2):362–369

    Article  CAS  PubMed  Google Scholar 

  34. Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S, Kawabata M, Kato M, Ichijo H, Miyazono K (1999) Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell 10(11):3801–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K (2001) Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 114(Pt 8):1483–1489

    CAS  PubMed  Google Scholar 

  36. Nojima J, Kanomata K, Takada Y, Fukuda T, Kokabu S, Ohte S, Takada T, Tsukui T, Yamamoto TS, Sasanuma H, Yoneyama K, Ueno N, Okazaki Y, Kamijo R, Yoda T, Katagiri T (2010) Dual roles of Smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins. J Biol Chem 285(20):15577–15586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohte S, Kokabu S, Iemura S, Sasanuma H, Yoneyama K, Shin M, Suzuki S, Fukuda T, Nakamura Y, Jimi E, Natsume T, Katagiri T (2012) Identification and functional analysis of Zranb2 as a novel Smad-binding protein that suppresses BMP signaling. J Cell Biochem 113(3):808–814

    Article  CAS  PubMed  Google Scholar 

  38. Tsukamoto S, Mizuta T, Fujimoto M, Ohte S, Osawa K, Miyamoto A, Yoneyama K, Murata E, Machiya A, Jimi E, Kokabu S, Katagiri T (2014) Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci Rep 4:7596. doi:10.1038/srep07596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukuda T, Kanomata K, Nojima J, Kokabu S, Akita M, Ikebuchi K, Jimi E, Komori T, Maruki Y, Matsuoka M, Miyazono K, Nakayama K, Nanba A, Tomoda H, Okazaki Y, Ohtake A, Oda H, Owan I, Yoda T, Haga N, Furuya H, Katagiri T (2008) A unique mutation of ALK2, G356D, found in a patient with fibrodysplasia ossificans progressiva is a moderately activated BMP type I receptor. Biochem Biophys Res Commun 377(3):905–909

    Article  CAS  PubMed  Google Scholar 

  40. Fukuda T, Kohda M, Kanomata K, Nojima J, Nakamura A, Kamizono J, Noguchi Y, Iwakiri K, Kondo T, Kurose J, Endo K, Awakura T, Fukushi J, Nakashima Y, Chiyonobu T, Kawara A, Nishida Y, Wada I, Akita M, Komori T, Nakayama K, Nanba A, Maruki Y, Yoda T, Tomoda H, PB Y, Shore EM, Kaplan FS, Miyazono K, Matsuoka M, Ikebuchi K, Ohtake A, Oda H, Jimi E, Owan I, Okazaki Y, Katagiri T (2009) Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva. J Biol Chem 284(11):7149–7156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohte S, Shin M, Sasanuma H, Yoneyama K, Akita M, Ikebuchi K, Jimi E, Maruki Y, Matsuoka M, Namba A, Tomoda H, Okazaki Y, Ohtake A, Oda H, Owan I, Yoda T, Furuya H, Kamizono J, Kitoh H, Nakashima Y, Susami T, Haga N, Komori T, Katagiri T (2011) A novel mutation of ALK2, L196P, found in the most benign case of fibrodysplasia ossificans progressiva activates BMP-specific intracellular signaling equivalent to a typical mutation, R206H. Biochem Biophys Res Commun 407(1):213–218

    Article  CAS  PubMed  Google Scholar 

  42. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  CAS  PubMed  Google Scholar 

  43. Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87(1):110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764

    Article  CAS  PubMed  Google Scholar 

  45. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771

    Article  CAS  PubMed  Google Scholar 

  46. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89(5):773–779

    Article  CAS  PubMed  Google Scholar 

  47. Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R (2002) Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells 7:949–960

    Article  CAS  PubMed  Google Scholar 

  48. Shin M, Ohte S, Fukuda T, Sasanuma H, Yoneyama K, Kokabu S, Miyamoto A, Tsukamoto S, Hohjoh H, Jimi E, Katagiri T (2013) Identification of a novel bone morphogenetic protein (BMP)-inducible transcript, BMP-inducible transcript-1, by utilizing the conserved BMP-responsive elements in the Id genes. J Bone Miner Metab 31(1):34–43

    Article  CAS  PubMed  Google Scholar 

  49. Nogami H, Urist MR (1974) Substrata prepared from bone matrix for chondrogenesis in tissue culture. J Cell Biol 62:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seyedin SM, Thompson AY, Bentz H, Rosen DM, McPherson JM, Conti A et al (1986) Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J Biol Chem 261:5693–5695

    CAS  PubMed  Google Scholar 

  51. Wosczyna MN, Biswas AA, Cogswell CA, Goldhamer DJ (2012) Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27:1004–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitterman JA, Kantanie S, Rocke DM, Kaplan FS (2005) Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics 116(5):e654–e661

    Article  PubMed  Google Scholar 

  53. Kaplan FS, Tabas JA, Zasloff MA (1990) Fibrodysplasia ossificans progressiva: a clue from the fly? Calcif Tissue Int 47:117–125

    Article  CAS  PubMed  Google Scholar 

  54. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527

    Article  CAS  PubMed  Google Scholar 

  55. Fujimoto M, Ohte S, Osawa K, Miyamoto A, Tsukamoto S, Mizuta T, Kokabu S, Suda N, Katagiri T (2015) Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors. Mol Endocrinol 29(1):140–152

    Article  PubMed  Google Scholar 

  56. Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444

    Article  CAS  PubMed  Google Scholar 

  57. Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, von Delft F, Knapp S, Knaus P, Bullock AN (2012) Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J Biol Chem 287(44):36990–36998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hatsell SJ, Idone V, Wolken DM, Huang L, Kim HJ, Wang L, Wen X, Nannuru KC, Jimenez J, Xie L, Das N, Makhoul G, Chernomorsky R, D’Ambrosio D, Corpina RA, Schoenherr CJ, Feeley K, Yu PB, Yancopoulos GD, Murphy AJ, Economides AN (2015) ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 7(303):303ra137

    Article  PubMed  Google Scholar 

  59. Fujimoto M, Ohte S, Shin M, Yoneyama K, Osawa K, Miyamoto A, Tsukamoto S, Mizuta T, Kokabu S, Machiya A, Okuda A, Suda N, Katagiri T (2014) Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 455(3–4):347–352

    Article  CAS  PubMed  Google Scholar 

  60. Chakkalakal SA, Zhang D, Culbert AL, Convente MR, Caron RJ, Wright AC, Maidment AD, Kaplan FS, Shore EM (2012) An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res 27(8):1746–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Culbert AL, Chakkalakal SA, Theosmy EG, Brennan TA, Kaplan FS, Shore EM (2014) Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells 32:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matsumoto Y, Hayashi Y, Schlieve CR, Ikeya M, Kim H, Nguyen TD, Sami S, Baba S, Barruet E, Nasu A, Asaka I, Otsuka T, Yamanaka S, Conklin BR, Toguchida J, Hsiao EC (2013) Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet J Rare Dis 8:190

    Article  PubMed  PubMed Central  Google Scholar 

  63. Matsumoto Y, Ikeya M, Hino K, Horigome K, Fukuta M, Watanabe M, Nagata S, Yamamoto T, Otsuka T, Toguchida J (2015) New protocol to optimize iPS cells for genome analysis of Fibrodysplasia Ossificans Progressiva. Stem Cells 33:1730–1742

    Article  CAS  PubMed  Google Scholar 

  64. Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K, Stricker S, Pohl J, Plöger F, Staub E, Nickel J, Sebald W, Knaus P, Mundlos S (2005) Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest 115:2373–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Degenkolbe E, König J, Zimmer J, Walther M, Reißner C, Nickel J, Plöger F, Raspopovic J, Sharpe J, Dathe K, Hecht JT, Mundlos S, Doelken SC, Seemann P. A GDF5 point mutation strikes twice–causing BDA1 and SYNS2. PLoS Genet 2013. 9:e1003846.

    Google Scholar 

Download references

Acknowledgments

I would like to thank the members of the Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University for their helpful discussions. This work was supported, in part, by JSPS KAKENHI Numbers 15K15556 and 25293326 and a grant-in-aid from the Support Project for the Formation of a Strategic Center in a Private University from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (S1311002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenobu Katagiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Katagiri, T. (2017). Novel In Vitro Assay Models to Study Osteogenesis and Chondrogenesis for Human Skeletal Disorders. In: Vukicevic, S., Sampath, K. (eds) Bone Morphogenetic Proteins: Systems Biology Regulators. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-47507-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47507-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47505-9

  • Online ISBN: 978-3-319-47507-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics