Skip to main content

Sensing on Robots Inspired by Nature

  • Chapter
  • First Online:
Biomimetic Microsensors Inspired by Marine Life

Abstract

Biomimetics as a functional study of biological systems has inspired the creation of unconventional robots and sensors that outperform traditional ones. Nature provides cues into unique sensing and propulsion mechanisms that are far superior to traditional systems. This chapter describes a harbor seal-inspired whisker sensor, an octopus-inspired robot, a stingray-inspired robot and autonomous robots with biomimetic sensors developed at Singapore-MIT Alliance for Research and Technology Centre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beem H, Triantafyllou M (2015) Exquisitely sensitive seal whisker-like sensors detect wakes at large distances. arXiv. doi:arXiv:1501.04582v1

  2. Kastelein R, van Gaalen M (1988) The sensitivity of the vibrissae of a Pacific walrus (Odobenus rosmarus divergens) Part 1. Aquat Mammals 14(3):123–133

    Google Scholar 

  3. Dehnhardt G (1990) Preliminary results from psychophysical studies on the tactile sensitivity in marine mammals. Sensory abilities of cetaceans, 1st edn. Springer, US, pp 435–446

    Chapter  Google Scholar 

  4. Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A. doi:10.1007/bf00191851

    Google Scholar 

  5. Dehnhardt G, Dücker G (1996) Tactual discrimination of size and shape by a California sea lion (Zalophus californianus). Anim Learn Behav 24:366–374. doi:10.3758/bf03199008

    Article  Google Scholar 

  6. Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    Google Scholar 

  7. Dehnhardt G, Mauck B, Hyvärinen H (1998) Ambient temperature does not affect the tactile sensitivity of mystacial vibrissae in harbour seals. J Exp Biol 201:3023–3029

    Google Scholar 

  8. Wieskotten S, Dehnhardt G, Mauck B et al (2010) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2194–2200. doi:10.1242/jeb.041699

    Article  Google Scholar 

  9. Wieskotten S, Mauck B, Miersch L et al (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi:10.1242/jeb.053926

    Article  Google Scholar 

  10. Hanke W, Witte M, Miersch L et al (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672. doi:10.1242/jeb.043216

    Article  Google Scholar 

  11. Miersch L, Hanke W, Wieskotten S et al (2011) Flow sensing by pinniped whiskers. Philos Trans R Soc B Biol Sci 366:3077–3084. doi:10.1098/rstb.2011.0155

    Article  Google Scholar 

  12. Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236. doi:10.1038/28303

    Article  Google Scholar 

  13. Weymouth G, Triantafyllou M (2011) Numerical study of seal whisker vibrations. In: 64th annual meeting of the APS division of fluid dynamics. APS, pp Volume 56, Number 18

    Google Scholar 

  14. Wieskotten S, Mauck B, Miersch L et al (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi:10.1242/jeb.053926

    Article  Google Scholar 

  15. Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2012) Design of a bio-inspired whisker sensor for underwater applications. In: IEEE sensors. IEEE, pp 1–4

    Google Scholar 

  16. Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2013) Performance analysis and characterization of bio-inspired whisker sensors for underwater applications. In: IEEE IROS. IEEE, pp 5956–5961

    Google Scholar 

  17. FDM 3D printer: http://www.stratasys.com

  18. Unpublished measurements of Harbor Seal Whisker mechanical properties by Valdivia y Alvarado P

    Google Scholar 

  19. Mitchinson BN, Gurney K, Redgrave P et al (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc R Soc B Biol Sci 271:2509–2516. doi:10.1098/rspb.2004.2882

    Article  Google Scholar 

  20. Flexible displacement sensor. http://www.flexpoint.com

  21. Silicone rubbers. http://www.smooth-on.com

  22. Huffard C (2006) Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J Exp Biol 209:3697–3707. doi:10.1242/jeb.02435

    Article  Google Scholar 

  23. Wells M (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824. doi:10.1139/z90-117

    Article  Google Scholar 

  24. Packard A (1969) Jet propulsion and the giant fibre response of Loligo. Nature 221:875–877. doi:10.1038/221875a0

    Article  Google Scholar 

  25. Weymouth G, Triantafyllou M (2013) Ultra-fast escape of a deformable jet-propelled body. J Fluid Mech 721:367–385. doi:10.1017/jfm.2013.65

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoerner S (1965) Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance. Db Hoerner Fluid Dynamics, Alburqueque, N.M.

    Google Scholar 

  27. Gosline J, DeMont M (1985) Jet-propelled swimming in squids. Sci Am 252:96–103. doi:10.1038/scientificamerican0185-96

    Article  Google Scholar 

  28. Weymouth G, Triantafyllou M (2012) Global vorticity shedding for a shrinking cylinder. J Fluid Mech 702:470–487. doi:10.1017/jfm.2012.200

    Article  MATH  Google Scholar 

  29. Weymouth G, Subramaniam V, Triantafyllou M (2015) Ultra-fast escape maneuver of an octopus-inspired robot. Bioinspir Biomim 10:016016. doi:10.1088/1748-3190/10/1/016016

    Article  Google Scholar 

  30. Frith H, Blake R (1995) The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts. J Exp Biol 198:1863–1873

    Google Scholar 

  31. Neumeister H, Ripley B, Preuss T, Gilly W (2000) Effects of temperature on escape jetting in the squid Loligo opalescens. J Exp Biol 203:547–557

    Google Scholar 

  32. Rosenberger L, Westneat M (1999) Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (Chondrichthyes: dasyatidae). J Exp Biol 202:3523–3539

    Google Scholar 

  33. Rosenberger L (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394

    Google Scholar 

  34. Parson J, Fish F, Nicastro A (2011) Turning performance of batoids: limitations of a rigid body. J Exp Mar Biol Ecol 402:12–18. doi:10.1016/j.jembe.2011.03.010

    Article  Google Scholar 

  35. Triantafyllou M, Triantafyllou G (1995) An efficient swimming machine. Sci Am 272:64–70. doi:10.1038/scientificamerican0395-64

    Article  Google Scholar 

  36. Anderson J (2002) Maneuvering and stability performance of a robotic tuna. Integr Comp Biol 42:118–126. doi:10.1093/icb/42.1.118

    Article  Google Scholar 

  37. Bandyopadhyay P, Donnelly M, Nedderman W, Castano J (1997) A dual flapping foil maneuvering device for low-speed rigid bodies. In: Third international symposium on performance enhancement for marine vehicles

    Google Scholar 

  38. Yu J, Tan M, Wang S, Chen E (2004) Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern B 34:1798–1810. doi:10.1109/tsmcb.2004.831151

    Article  Google Scholar 

  39. Dogangil G, Ozcicek E, Kuzucu A (2005) Design, construction, and control of a robotic dolphin. In: IEEE ROBIO. IEEE, pp 51–56

    Google Scholar 

  40. Kato N (2000) Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J Oceanic Eng 25:121–129. doi:10.1109/48.820744

    Article  Google Scholar 

  41. Colgate J, Lynch K (2004) Mechanics and control of swimming: a review. IEEE J Oceanic Eng 29:660–673. doi:10.1109/joe.2004.833208

    Article  Google Scholar 

  42. Morgansen K, Triplett B, Klein D (2007) Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans Robot 23:1184–1199. doi:10.1109/led.2007.911625

    Article  Google Scholar 

  43. Valdivia y, Alvarado P, Youcef-Toumi K (2006) Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J Dyn Syst Meas Contr 128:3. doi:10.1115/1.2168476

    Article  Google Scholar 

  44. Valdivia y Alvarado P (2007) Design of biomimetic compliant devices for locomotion in liquid environments. Ph.D., Massachusetts Institute of Technology

    Google Scholar 

  45. Cloitre A, Subramaniam V, Patrikalakis N, Valdivia y Alvarado P (2012) Design and control of a field deployable batoid robot. In: IEE BioRob. IEEE, pp 707–712

    Google Scholar 

  46. Valdivia y Alvarado P, Chin S, Larson W et al. (2010) A soft body under-actuated approach to multi degree of freedom biomimetic robots: a stingray example. In: IEEE BioRob. IEEE, pp 473–478

    Google Scholar 

  47. Valdivia y Alvarado P (2011) Hydrodynamic performance of a soft body under-actuated batoid robot. In: IEEE ROBIO. IEEE, pp 1712–1717

    Google Scholar 

  48. Wen L, Lauder G (2013) Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. Bioinspir Biomim 8:046013. doi:10.1088/1748-3182/8/4/046013

    Article  Google Scholar 

  49. Bouffanais R, Weymouth G, Yue D (2010) Hydrodynamic object recognition using pressure sensing. Proc R Soc A Math Phys Eng Sci 467:19–38. doi:10.1098/rspa.2010.0095

    Article  MathSciNet  MATH  Google Scholar 

  50. Liao J, Beal D, Lauder G, Triantafyllou M (2003) The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073. doi:10.1242/jeb.00209

    Article  Google Scholar 

  51. Leonard J, Smith C (1997) Sensor data fusion in marine robotics. In: The seventh international offshore and polar engineering conference

    Google Scholar 

  52. Coombs S (2001) Smart skins: information processing by lateral line flow sensors. Auton Robots 11:255–261. doi:10.1023/A:1012491007495

    Article  MATH  Google Scholar 

  53. Villanueva A, Marut K, Michael T, Priya S (2013) Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro). Bioinspir Biomim 8:046005. doi:10.1088/1748-3182/8/4/046005

    Article  Google Scholar 

  54. Chen Z, Um T, Bart-Smith H (2011) A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens Actuators A 168:131–139. doi:10.1016/j.sna.2011.02.034

    Article  Google Scholar 

  55. Guo Shuxiang, Fukuda T, Asaka K (2003) A new type of fish-like underwater microrobot. IEEE/ASME Trans Mechatron 8:136–141. doi:10.1109/tmech.2003.809134

    Article  Google Scholar 

  56. Asadnia M, Kottapalli A, Haghighi R et al (2015) MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspir Biomim 10:036008. doi:10.1088/1748-3190/10/3/036008

    Article  Google Scholar 

  57. Kottapalli A, Asadnia M, Shen Z et al (2016) MEMS Artificial Neuromast Arrays for Hydrodynamic Control of Soft-Robots. IEEE NEMS

    Google Scholar 

  58. Asadnia M, Kottapalli A, Shen Z et al (2013) Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles. IEEE Sensors J 13:3918–3925. doi:10.1109/jsen.2013.2259227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Subramaniam, V., Alvarado, P., Weymouth, G. (2017). Sensing on Robots Inspired by Nature. In: Biomimetic Microsensors Inspired by Marine Life. Springer, Cham. https://doi.org/10.1007/978-3-319-47500-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47500-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47499-1

  • Online ISBN: 978-3-319-47500-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics