Skip to main content

Understanding the Agent, Part I: Opioid Biology and Basic Pharmacology

  • Chapter
  • First Online:
Opioid Dependence
  • 1605 Accesses

Abstract

Safe, ethical, and effective prescription of opioids is predicated upon a thorough understanding of the biologic systems wherein/upon which they act.

Endogenous opioids are produced by the body and act as part of a comprehensive homeostatic self-preservation effort geared toward the well-being of the organism. The most salient aspect of this system is acute pain relief, but within seconds, modulating and counter-regulatory effects are initiated to balance pain relief with perception of danger thus facilitating help.

Therapeutic (exogenous) opioids exist within nature as well (e.g., opiates) and have been modified and copied pharmaceutically to harness the potent analgesic qualities of this system. Unlike the endogenous system, however, the only limitation upon exogenous opioid exposure is volitional (or imposed) discretion on the part of the consumer, and in a situation of excess exposure—whether by quantity or chronicity—both tolerance and adverse effects reduce analgesic efficacy and tip the balance of risk: benefit away from the positive. The body is prepared to some extent to reduce these potential threats by eliminating the agent metabolically. Genetic factors play an increasingly appreciated role in varying efficiency of this process from individual to individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koren G, Cairns J, Chitayat D. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet. 2006;368:704.

    Article  PubMed  Google Scholar 

  2. Salzet M, Vieau D, Day R. Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids. Trends Neurosci. 2000;23:550–5.

    Article  CAS  PubMed  Google Scholar 

  3. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1988;19:155–7.

    Article  Google Scholar 

  4. Liem EB, Lin CM, Suleman MI, Doufas AG, Gregg RG, Veauthier JM, et al. Anesthetic requirement is increased in redheads. Anesthesiology. 2004;101:279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liem EB, Joiner TV, Tsueda K, Sessler DI. Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology. 2005;102:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mogil JS, Ritchie J, Smith SB, Strasburg K, Kaplan L, Wallace MR, et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet. 2005;42:583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fields HL, Bry J, Hentall I, Zorman G. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci. 1983;3:2545–52.

    CAS  PubMed  Google Scholar 

  8. Fields HL, Malick A, Burstein R. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J Neurophysiol. 1995;74:1742–59.

    CAS  PubMed  Google Scholar 

  9. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60:214–25.

    Article  CAS  PubMed  Google Scholar 

  10. Levine JD, Gordon NC. Influence of the method of drug administration on analgesic response. Nature. 1984;312:755–6.

    Article  CAS  PubMed  Google Scholar 

  11. Fields HL. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res. 2000;122:245–53.

    Article  CAS  PubMed  Google Scholar 

  12. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63:533–43.

    Article  CAS  PubMed  Google Scholar 

  13. Heinke B, Gingl E, Sandkühler J. Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. Neuroscience. 2011;31:1313–22.

    Article  CAS  PubMed  Google Scholar 

  14. Takasusuki T, Yaksh TL. Regulation of spinal substance p release by intrathecal calcium channel blockade. Anesthesiology. 2011;115:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumamoto E, Mizuta K, Fujita T. Opioid actions in primary afferent fibers-involvement in analgesia and anesthesia. Pharmaceuticals. 2011;4:343–65.

    Article  CAS  PubMed Central  Google Scholar 

  16. Cesselin F, Benoliel JJ, Bourgoin S, et al. Spinal mechanisms of opioid analgesia. In: Stein C, editor. Opioids in pain control: basic and clinical aspects. Cambridge: Cambridge University Press; 1999. p. 70–95.

    Google Scholar 

  17. Baillie LD, Schmidhammer H, Mulligan SJ. Peripheral mu-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals. Neuropharmacology. 2015;93:267–73.

    Article  CAS  PubMed  Google Scholar 

  18. Smith HS. Optimizing pharmacologic outcomes: individualization of therapy. In: Smith HS, editor. Opioid therapy in the twenty-first century. New York: Oxford University Press; 2013. p. 135–44.

    Google Scholar 

  19. Yaksh TL, Wallace MS. Opioids, analgesia, and pain management. In: Brunton L, editor. Goodman and Gilman’s pharmacologic basis of therapeutics. New York: McGraw–Hill; 2011. p. 481–525.

    Google Scholar 

  20. Chen SR, Pan HL. Spinal endogenous acetylcholine contributes to the analgesic effect of systemic morphine in rats. Anesthesiology. 2001;95:525–30.

    Article  CAS  PubMed  Google Scholar 

  21. Sehgal N, Smith HS, Manchikanti L. Peripherally acting opioids and clinical implications for pain control. Pain Physician. 2011;14:249–58.

    PubMed  Google Scholar 

  22. Zadina JE, Hackler L, Ge LJ, Kastin AJ. A potent and selective endogenous agonist for the mu-opiate receptor. Nature. 1997;386:499–502.

    Article  CAS  PubMed  Google Scholar 

  23. McConalogue K, Grady EF, Minnis J, Balestra B, Tonini M, Brecha NC, et al. Activation and internalization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin 2. Neuroscience. 1999;90:1051–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarić A, Balog T, Sobocanec S, Marotti T. Endomorphin 1 activates nitric oxide synthase 2 activity and downregulates nitric oxide synthase 2 mRNA expression. Neuroscience. 2007;144:1454–61.

    Article  PubMed  Google Scholar 

  25. Varamini P, Blanchfield JT, Toth I. Endomorphin derivatives with improved pharmacological properties. Curr Med Chem. 2013;20:2741–58.

    Article  CAS  PubMed  Google Scholar 

  26. Zadina JE, Nilges MR, Morgenweck J, Zhang X, Hackler L, Fasold MB. Endomorphin analog analgesics with reduced abuse liability, respiratory depression, motor impairment, tolerance, and glial activation relative to morphine. Neuropharmacology. 2016;105:215–27.

    Article  CAS  PubMed  Google Scholar 

  27. Dupont A, Cusan L, Garon M. Extremely rapid degradation of [3H] methionine-enkephalin by various rat tissues in vivo and in vitro. Life Sci. 1977;21:907–14.

    Article  CAS  PubMed  Google Scholar 

  28. Milloy D. Enkephalins and endorphins: the endogenous opiates. AANA J. 1982;50:569–73.

    CAS  PubMed  Google Scholar 

  29. Roques BP, Noble F, Fournie-Zaluski MC. Endogenous opioid peptides and analgesia. In: Stein C, editor. Opioids in pain control: basic and clinical aspects. Cambridge: Cambridge University Press; 1999. p. 21–45.

    Google Scholar 

  30. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C. The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J Neurosci. 2008;28:407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A. 1979;76:6666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han JS, Xie CW. Dynorphin: potent analgesic effect in spinal cord of the rat. Sci Sin, Ser B, Chem Biol Agric Med Earth Sci. 1984;27:169–77.

    CAS  PubMed  Google Scholar 

  33. Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, et al. Dynorphin a activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci. 2006;9(12):1534–40.

    Article  CAS  PubMed  Google Scholar 

  34. Podvin S, Yaksh T, Hook V. The emerging role of spinal dynorphin in chronic pain: a therapeutic perspective. Annu Rev. Pharmacol Toxicol. 2016;56:511–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Butelman ER, Yuferov V, Kreek MJ. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci. 2012;35:587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci. 2012;69:857–96.

    Article  CAS  PubMed  Google Scholar 

  37. Wee S, Koob GF. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology. 2010;210:121–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth. 2011;107:8–18.

    Article  CAS  PubMed  Google Scholar 

  39. Peppin JF, Raffa RB. Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther. 2015;40:155–66.

    Article  CAS  PubMed  Google Scholar 

  40. Gendron L, Mittal N, Beaudry H, Walwyn W. Recent advances on the delta-opioid receptor: from trafficking to function. Brit J Pharmacol. 2015;172:403–19.

    Article  CAS  Google Scholar 

  41. Beaudry H, Dubois D, Gendron L. Activation of spinal mu- and delta-opioid receptors potently inhibits substance P release induced by peripheral noxious stimuli. J Neurosci. 2011;31:13068–77.

    Article  CAS  PubMed  Google Scholar 

  42. Quock RM, Burkey TH, Varga E, Hosohata Y, Hosohata K, Cowell SM, et al. The delta-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol Rev. 1999;51:503–32.

    CAS  PubMed  Google Scholar 

  43. Xia Y, editor. Neural function of the delta-opioid receptor. New York: Springer; 2015.

    Google Scholar 

  44. Arendt-Nielsen L, Olesen AE, Staahl C, Menzaghi F, Kell S, Wong GY, et al. Analgesic efficacy of peripheral kappa-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model: selective effect on visceral pain. Anesthesiology. 2009;111:616–24.

    Article  CAS  PubMed  Google Scholar 

  45. Schroder W, Lambert DG, Koch T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol. 2014;171:3777–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Donica CL, Awwad HO, Thakker DR, Standifer KM. Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol. 2013;83:907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mallimo EM, Kusnecov AW. The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci. 2013;7:1–18.

    Article  Google Scholar 

  48. Bodera P, Stankiewicz W, Kocik J. Interactions of orphanin FQ/Nociceptin (OFQ/N) system with immune system factors and hypothalamic-pituitary-adrenal (HPA) axis. Pharmacol Rep. 2014;66:288–91.

    Article  CAS  PubMed  Google Scholar 

  49. Trang T, Al-Hasani R, Salvemini D, Salter MW, Gutstein H, Cahill CM. Pain and poppies: the good, the bad and the ugly of opioid analgesics. J Neurosci. 2015;35:13879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol. 2001;85:280–6.

    CAS  PubMed  Google Scholar 

  51. Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol. 2004;92:1982–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hebb AL, Poulin JF, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition and emotion. Prog Neuropscyhopharmacol Biol Psychiatry. 2005;29:1225–38.

    Article  CAS  Google Scholar 

  53. Lovick TA. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci Biobehav Rev. 2008;32:852–62.

    Article  CAS  PubMed  Google Scholar 

  54. Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav. 2012;107:699–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mollereau C, Roumy M, Zajac JM. Opioid-modulating peptides: mechanisms of action. Curr Top Med Chem. 2005;5:341–55.

    Article  CAS  PubMed  Google Scholar 

  56. Mouledous L, Mollereau C, Zajac JM. Opioid-modulating properties of the neuropeptide FF system. Biofactors. 2010;36:423–9.

    Article  CAS  PubMed  Google Scholar 

  57. Elhabazi K, Trigo JM, Mollereau C, Moulédous L, Zajac JM, Bihel F, et al. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br J Pharmacol. 2012;165:424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Connor TM, O’Connel J, O’Brien DI. The role of substance P in inflammatory disease. J Cell Physiol. 2004;201:167–80.

    Article  PubMed  Google Scholar 

  59. Garcia-Recio S, Gascon P. Biological and pharmacological aspects of the NK1-receptor. Biomed Res Int. 2015;2015:495704. doi:10.1155/2015/495704.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu YJ, Arttamangkul S, Evans CJ, Williams JT, von Zastrow M. Neurokinin 1 receptors regulate morphine-induced endocytosis and desensitization of mu-opioid receptors in CNS neurons. J Neurosci. 2009;29:222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan X, Jin WY, Wang YT. The NDMA receptor complex: a multifunctional machine at the glutaminergic synapse. Front Cell Neurosci. 2014;8:1–9.

    Google Scholar 

  62. Vyklicky V, Korinek M, Smejkalova T. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl. 1):S191–203.

    CAS  PubMed  Google Scholar 

  63. Rodriguez-Munoz MR, Sanchez-Blazquez P, Vicente-Sanchez A, Berrocoso E, Garzón J. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2012;37:338–49.

    Article  CAS  PubMed  Google Scholar 

  64. Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev. 2016;68:419–57.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Barker K, Shi S. Blockade of PDGFR-β activation eliminates morphine analgesic tolerance. Nat Med. 2012;18:385–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Valenzuela CF, Xiong Z, MacDonald JF, Weiner JL, Frazier CJ, Dunwiddie TV, et al. Platelet-derived growth factor induces a long-term inhibition of N-methyl-D aspartate receptor function. J Biol Chem. 1996;271:16151–9.

    Article  CAS  PubMed  Google Scholar 

  67. Chabot-Dore AJ, Schuster DJ, Stone LS, Wilcox GL. Analgesic synergy between opioid and α2-adrenoreceptors. Brit J Pharm. 2015;172:388–402.

    Article  CAS  Google Scholar 

  68. Watkins LR, Hutchinson MR, Rice KC, Maier SF. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci. 2009;30:581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hutchinson MR, Shavit Y, Grace PM. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev. 2011;63:772–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hutchinson MR, Bland ST, Johnson KW. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. Sci World J. 2007;7:98–111.

    Article  Google Scholar 

  71. Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets. 2012;13:230–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klaassen C, Aleksunes L. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010;62:1–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. König J, Müller F, Fromm M. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65:944–66.

    Article  PubMed  Google Scholar 

  74. Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev Neurosci. 2010;21:29–53.

    Article  CAS  PubMed  Google Scholar 

  75. Tournier N, Declèves X, Saubaméa B. Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology. Curr Pharm Des. 2011;17:2829–42.

    Article  CAS  PubMed  Google Scholar 

  76. Buxton ILO, Benet LZ. Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination. In: Brunton L, editor. Goodman and Gilman’s pharmacologic basis of therapeutics. New York: McGraw Hill; 2011. p. 17–39.

    Google Scholar 

  77. Smith HS. Opioid metabolism. Mayo Clin Proc. 2009;84:613–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith H. Variations in opioid responsiveness. Pain Physician. 2008;11:237–48.

    PubMed  Google Scholar 

  79. Sadhasivam S, Chidambaran V. Pharmacogenomics of opioids and perioperative pain management. Pharmacogenomics. 2012;13:1719–40.

    Article  CAS  PubMed  Google Scholar 

  80. Kambur O, Männistö PT. Catechol-O-methyltransferase and pain. Int Rev. Neurobiol. 2010;95:227–79.

    Article  CAS  PubMed  Google Scholar 

  81. Tammimäki A, Männistö PT. Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics. 2012;22:673–91.

    Article  PubMed  Google Scholar 

  82. Kroslak T, LaForge KS, Gianotte RJ, Ho A, Nielsen DA, Kreek MJ. The single nucelotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem. 2007;103:77–87.

    CAS  PubMed  Google Scholar 

  83. Hwang IC, Park JY, Myung SK, Ahn HY, Fukuda K, Liao Q. OPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and meta-analysis. Anesthesiology. 2014;121:825–34.

    Article  PubMed  Google Scholar 

  84. Ren ZY, Xu XQ, Bao YP, He J, Shi L, Deng JH, et al. The impact of genetic variation on sensitivity to opioid analgesics in patients with postoperative pain: a systematic review and meta-analysis. Pain Physician. 2015;18:131–52.

    PubMed  Google Scholar 

  85. Walter C, Lotsch J. Meta-analysis of the relevance of the OPRM1 118A > G genetic variant for pain treatment. Pain. 2009;146:270–5.

    Article  CAS  PubMed  Google Scholar 

  86. Vuilleumier PH, Stamer UM, Landau R. Pharmacogenomic considerations in opioid analgesia. Pharmacogenom Personal Med. 2012;5:73–87.

    CAS  Google Scholar 

  87. Dobrinas M, Crettol S, Oneda B. Contribution of CYP2B6 alleles in explaining extreme (S)-methadone plasma levels: a CYP2B6 gene resequencing study. Pharmacogenet Genomics. 2013;23:84–93.

    Article  CAS  PubMed  Google Scholar 

  88. Eap CB, Crettol S, Rougier JS, Schläpfer J, Sintra Grilo L, Déglon JJ, et al. Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther. 2007;81:719–28.

    Article  CAS  PubMed  Google Scholar 

  89. Cox BM. Mechanisms of tolerance. In: Stein C, editor. Opioids in pain control: basic and clinical aspects. Cambridge: Cambridge University Press; 1999. p. 70–95.

    Google Scholar 

  90. Williams JT, Ingram SL, Henderson G. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65:223–54.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pasternak GW, Pan YX. Mix and match: heterodimers and opioid tolerance. Neuron. 2011;69:6–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldberg JS. Chronic opioid therapy and opioid tolerance: a new hypothesis. Pain Res Treat. 2013;2013:407504. doi:10.1155/2013/407504.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McAnally, H.B. (2018). Understanding the Agent, Part I: Opioid Biology and Basic Pharmacology. In: Opioid Dependence . Springer, Cham. https://doi.org/10.1007/978-3-319-47497-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47497-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47496-0

  • Online ISBN: 978-3-319-47497-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics