Skip to main content

αIIbβ3 (GPIIb/IIIa) Structure and Function

  • Chapter
  • First Online:

Abstract

The platelet membrane protein αIIbβ3, otherwise known as glycoprotein IIb/IIIa (GPIIb/IIIa), is a member of the ubiquitous integrin family of transmembrane (TM) heterodimers and is absolutely required for platelet aggregation. αIIbβ3 mediates platelet aggregation when fibrinogen or von Willebrand factor (vWF) bound to active αIIbβ3 cross-links adjacent stimulated platelets into stable aggregates. αIIbβ3 heterodimers are assembled from αIIb and β3 monomers in the endoplasmic reticulum. Mutations impairing the synthesis of either subunit decrease αIIbβ3 expression, thereby causing the autosomal bleeding disorder Glanzmann thrombasthenia. Conversely, αIIbβ3-mediated platelet aggregation is responsible for the arterial thrombi that cause heart attack and stroke. αIIbβ3 is present on platelets in an equilibrium between an inactive bent conformation and an active extended conformation. To prevent spontaneous platelet aggregation, however, αIIbβ3 on circulating platelets is constrained to its inactive conformation via intramolecular interactions involving its transmembrane and cytoplasmic domains. When platelets encounter a damaged blood vessel, stimulation by agonists such as thrombin and ADP causes nearly instantaneous αIIbβ3 activation by inducing talin-1 and kindlin-3 binding to the β3 cytoplasmic domain, thereby relieving the transmembrane and cytoplasmic domain restraints. αIIbβ3 binds to fibrin as well as fibrinogen. Thus, following αIIbβ3 activation, αIIbβ3 bound to fibrin transmits the retraction forces that consolidate fibrin clots, enabling them to resist the potentially disruptive shear forces present in circulating blood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adair BD, Yeager M (2002) Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and X-ray crystallography. Proc Natl Acad Sci U S A 99:14059–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID (2009) The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. Embo J 28:3623–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ (2003) Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci U S A 100:13298–13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-salgado EG, Haj F, Dubois C, Moran B, Kasirer-friede A, Furie BC, Furie B, Neel BG, Shattil SJ (2005) PTP-1B is an essential positive regulator of platelet integrin signaling. J Cell Biol 170:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basani RB, French DL, Vilaire G, Brown DL, Chen F, Coller BS, Derrick JM, Gartner TK, Bennett JS, Poncz M (2000) A naturally occurring mutation near the amino terminus of aIIb defines a new region involved in ligand binding to aIIbb3. Blood 95:180–188

    CAS  PubMed  Google Scholar 

  • Bei L, Lu Y, Bellis SL, Zhou W, Horvath E, Eklund EA (2007) Identification of a HoxA10 activation domain necessary for transcription of the gene encoding beta3 integrin during myeloid differentiation. J Biol Chem 282:16846–16859

    Article  CAS  PubMed  Google Scholar 

  • Bennett JS, Vilaire G (1979) Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 64:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JS, Shattil SJ, Power JW, Gartner TK (1988) Interaction of fibrinogen with its platelet receptor. Differential effects of a and g chain fibrinogen peptides on the glycoprotein IIb-IIIa complex. J Biol Chem 263:12948–12953

    CAS  PubMed  Google Scholar 

  • Bennett JS, Chan C, Vilaire G, Mousa SA, Degrado WF (1997) Agonist-activated avb3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem 272:8137–8140

    Article  CAS  PubMed  Google Scholar 

  • Berger BW, Kulp DW, Span LM, Degrado JL, Billings PC, Senes A, Bennett JS, Degrado WF (2010) Consensus motif for integrin transmembrane helix association. Proc Natl Acad Sci U S A 107:703–708

    Article  CAS  PubMed  Google Scholar 

  • Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, Qin J, Ma YQ, Plow EF (2012) Spatial coordination of kindlin-2 with talin head domain in interaction with integrin beta cytoplasmic tails. J Biol Chem 287:24585–24594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottcher RT, Lange A, Fassler R (2009) How ILK and kindlins cooperate to orchestrate integrin signaling. Curr Opin Cell Biol 21:670–675

    Article  PubMed  CAS  Google Scholar 

  • Brahme NN, Harburger DS, Kemp-O’Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA (2013) Kindlin binds migfilin tandem LIM domains and regulates migfilin focal adhesion localization and recruitment dynamics. J Biol Chem 288:35604–35616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buensuceso CS, Arias-salgado EG, Shattil SJ (2004) Protein-protein interactions in platelet alphaIIbbeta3 signaling. Semin Thromb Hemost 30:427–439

    Article  CAS  PubMed  Google Scholar 

  • Calderwood DA (2004) Talin controls integrin activation. Biochem Soc Trans 32:434–437

    Article  CAS  PubMed  Google Scholar 

  • Calderwood DA, Yan B, de Pereda JM, Garcia-alvarez B, Fujioka Y, Liddington RC, Ginsberg MH (2002) The phosphotyrosine binding (PTB)-like domain of talin activates integrins. J Biol Chem 277:21749–21758

    Article  CAS  PubMed  Google Scholar 

  • Calderwood DA, Campbell ID, Critchley DR (2013) Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 14:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr ME Jr (2003) Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem Biophys 38:55–78

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Salas A, Springer TA (2003) Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nat Struct Biol 10:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Choi WS, Rice WJ, Stokes DL, Coller BS (2013) Three-dimensional reconstruction of intact human integrin alphaIIbbeta3: new implications for activation-dependent ligand binding. Blood 122:4165–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collet JP, Montalescot G, Lesty C, Weisel JW (2002) A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ Res 90:428–434

    Article  CAS  PubMed  Google Scholar 

  • Critchley DR (2009) Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38:235–254

    Article  CAS  PubMed  Google Scholar 

  • Dai A, Ye F, Taylor DW, Hu G, Ginsberg MH, Taylor KA (2015) The structure of a full-length membrane-embedded integrin bound to a physiological ligand. J Biol Chem 290:27168–27175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DANA N, Fathallah DM, Arnaout MA (1991) Expression of a soluble and functional form of the human beta 2 integrin CD11b/CD18. Proc Natl Acad Sci U S A 88:3106–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Plow EF, Freilinger ALI, O’Toole TE, Loftus JC, Ginsberg MH (1991) Ligands “activate” integrin aIIbb3 (platelet GPIIb-IIIa). Cell 65:409–416

    Article  CAS  PubMed  Google Scholar 

  • Dumon S, Walton DS, Volpe G, Wilson N, Dasse E, del Pozzo W, Landry JR, Turner B, O’Neill LP, Gottgens B, Frampton J (2012) Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation. PLoS One 7:e43300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duperray A, Berthier R, Chagnon E, Ryckewaert J-J, Ginsberg M, Plow E, Marguerie G (1987) Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes. J Cell Biol 104:1665–1673

    Article  CAS  PubMed  Google Scholar 

  • Eng ET, Smagghe BJ, Walz T, Springer TA (2011) Intact alphaIIbbeta3 integrin is extended after activation as measured by solution X-ray scattering and electron microscopy. J Biol Chem 286:35218–35226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell DH, Thiagarajan P, Chung DW, Davie EW (1992) Role of fibrinogen a and g chain sites in platelet aggregation. Proc Natl Acad Sci U S A 89:10729–10732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald LA, Steiner B, Rall SC Jr, Lo S-S, Phillips DR (1987) Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. J Biol Chem 262:3936–3939

    CAS  PubMed  Google Scholar 

  • Fox JE, Taylor RG, Taffarel M, Boyles JK, Goll DE (1993) Evidence that activation of platelet calpain is induced as a consequence of binding of adhesive ligand to the integrin, glycoprotein IIb-IIIa. J Cell Biol 120:1501–1507

    Article  CAS  PubMed  Google Scholar 

  • Gaines P, Geiger JN, Knudsen G, Seshasayee D, Wojchowski DM (2000) GATA-1- and FOG-dependent activation of megakaryocytic alpha IIB gene expression. J Biol Chem 275:34114–34121

    Article  CAS  PubMed  Google Scholar 

  • Garcia-alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC (2003) Structural determinants of integrin recognition by talin. Mol Cell 11:49–58

    Article  CAS  PubMed  Google Scholar 

  • Gartner TK, Bennett JS (1985) The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet aggregation and fibrinogen binding to activated platelets. J Biol Chem 260:11891–11894

    CAS  PubMed  Google Scholar 

  • Gekas C, Graf T (2013) CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121:4463–4472

    Article  CAS  PubMed  Google Scholar 

  • George JN, Caen JP, Nurden AT (1990) Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood 75:1383–1395

    CAS  PubMed  Google Scholar 

  • Gong H, Shen B, Flevaris P, Chow C, Lam SC, Voyno-yasenetskaya TA, Kozasa T, Du X (2010) G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin “outside-in” signaling. Science 327:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goult BT, Xu XP, Gingras AR, Swift M, Patel B, Bate N, Kopp PM, Barsukov IL, Critchley DR, Volkmann N, Hanein D (2013) Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation. J Struct Biol 184:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas TA, Plow EF (1996) The cytoplasmic domain of alphaIIb beta3. A ternary complex of the integrin alpha and beta subunits and a divalent cation. J Biol Chem 271:6017–6026

    Article  CAS  PubMed  Google Scholar 

  • Haling JR, Monkley SJ, Critchley DR, Petrich BG (2011) Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood 117:1719–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Sano H, Seo S, Kume T (2008) The Foxc2 transcription factor regulates angiogenesis via induction of integrin beta3 expression. J Biol Chem 283:23791–23800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidenreich R, Eisman R, Surrey S, Delgrosso K, Bennett JS, Schwartz E, Poncz M (1990) Organization of the gene for platelet glycoprotein IIb. Biochemistry 29:1232–1244

    Article  CAS  PubMed  Google Scholar 

  • Hughes PE, Diaz-gonzales F, Leong L, Wu C, Mcdonald JA, Shattil SJ, Ginsberg MH (1996) Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 271:6571–6574

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Ill CR, Engvall E, Ruoslahti E (1984) Adhesion of platelets to laminin in the absence of activation. J Cell Biol 99:2140–2145

    Article  CAS  PubMed  Google Scholar 

  • Jackers P, Szalai G, Moussa O, Watson DK (2004) Ets-dependent regulation of target gene expression during megakaryopoiesis. J Biol Chem 279:52183–52190

    Article  CAS  PubMed  Google Scholar 

  • Jennings LK, Phillips DR (1982) Purification of glycoproteins IIb and III from human platelet plasma membranes and characterization of a calcium-dependent glycoprotein IIb-III complex. J Biol Chem 257:10458–10466

    CAS  PubMed  Google Scholar 

  • Jones CI, Tucker KL, Sasikumar P, Sage T, Kaiser WJ, Moore C, Emerson M, Gibbins JM (2014) Integrin-linked kinase regulates the rate of platelet activation and is essential for the formation of stable thrombi. J Thromb Haemost 12:1342–1352

    Article  CAS  PubMed  Google Scholar 

  • Kamata T, Tieu KK, Irie A, Springer TA, Takada Y (2001) Amino acid residues in the alpha IIb subunit that are critical for ligand binding to integrin alpha IIbbeta 3 are clustered in the beta-propeller model. J Biol Chem 276:44275–44283

    Article  CAS  PubMed  Google Scholar 

  • Karakose E, Schiller HB, Fassler R (2010) The kindlins at a glance. J Cell Sci 123:2353–2356

    Article  PubMed  CAS  Google Scholar 

  • Kasirer-friede A, Kang J, Kahner B, Ye F, Ginsberg MH, Shattil SJ (2014) ADAP interactions with talin and kindlin promote platelet integrin alphaIIbbeta3 activation and stable fibrinogen binding. Blood 123:3156–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Schmidt T, Cho EG, Ye F, Ulmer TS, Ginsberg MH (2012a) Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 481:209–213

    Article  CAS  Google Scholar 

  • Kim C, Ye F, Hu X, Ginsberg MH (2012b) Talin activates integrins by altering the topology of the beta transmembrane domain. J Cell Biol 197:605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapproth S, Moretti FA, Zeiler M, Ruppert R, Breithaupt U, Mueller S, Haas R, Mann M, Sperandio M, Fassler R, Moser M (2015) Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice. Blood 126:2592–2600

    Article  CAS  PubMed  Google Scholar 

  • Kloczewiak M, Timmons S, Hawiger J (1983) Recognition site for the platelet receptor is present on the 15-residue carboxy-terminal fragment of the g chain of human fibrinogen and is not involved in the fibrin polymerization reaction. Thromb Res 29:249–255

    Article  CAS  PubMed  Google Scholar 

  • Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC (2004) The Kindler syndrome protein is regulated by transforming growth factor-beta and involved in integrin-mediated adhesion. J Biol Chem 279:6824–6833

    Article  CAS  PubMed  Google Scholar 

  • Kolodziej MA, Vilaire G, Gonder D, Poncz M, Bennett JS (1991a) Study of the endoproteolytic cleavage of platelet glycoprotein IIb using oligonucleotide-mediated mutagenesis. J Biol Chem 266:23499–23504

    CAS  PubMed  Google Scholar 

  • KOLODZIEJ MA, Vilaire G, Rifat S, Poncz M, Bennett JS (1991b) Effect of deletion of glycoprotein IIb exon 28 on the expression of the platelet glycoprotein IIb/IIIa complex. Blood 78:2344–2353

    CAS  PubMed  Google Scholar 

  • Lam WA, Chaudhuri O, Crow A, Webster KD, Li TD, Kita A, Huang J, Fletcher DA (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10:61–66

    Article  CAS  PubMed  Google Scholar 

  • Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. Embo J 113:4747–4753

    Google Scholar 

  • Lee HS, Lim CJ, Puzon-mclaughlin W, SHATTIL SJ, Ginsberg MH (2009) RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 284:5119–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefkovits J, Plow E, Topol E (1995) Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 332:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, Engelman DM (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 267:7683–7689

    CAS  PubMed  Google Scholar 

  • Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, Degrado WF (2001a) Oligomerization of the integrin aIIbb3: Roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A 98:12462–12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, Degrado WF (2001b) Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A 98:12462–12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Babu CR, Valentine K, Lear JD, Wand AJ, Bennett JS, Degrado WF (2002) Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Biochemistry 41:15618–15624

    Article  CAS  PubMed  Google Scholar 

  • Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, Degrado WF, Bennett JS (2003) Activation of integrin aIIbb3 by modulation of transmembrane helix associations. Science 300:795–798

    Article  CAS  PubMed  Google Scholar 

  • Li R, Gorelik R, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS (2004) Dimerization of the transmembrane domain of Integrin aIIb subunit in cell membranes. J Biol Chem 279:26666–26673

    Article  CAS  PubMed  Google Scholar 

  • Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS (2005) A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci U S A 102:1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin FY, Zhu J, Eng ET, Hudson NE, Springer TA (2016) beta-Subunit binding is sufficient for ligands to open the integrin alphaIIbbeta3 headpiece. J Biol Chem 291:4537–4546

    Article  CAS  PubMed  Google Scholar 

  • Litvinov RI, Nagaswami C, Vilaire G, Shuman H, Bennett JS, Weisel JW (2004) Functional and structural correlations of individual alphaIIbbeta3 molecules. Blood 104:3979–3985

    Article  CAS  PubMed  Google Scholar 

  • Litvinov RI, Farrell DH, Weisel JW, Bennett JS (2016) The platelet integrin alphaIIbbeta3 differentially interacts with fibrin versus fibrinogen. J Biol Chem 291:7858–7867

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fukuda K, Xu Z, Ma YQ, Hirbawi J, Mao X, Wu C, Plow EF, Qin J (2011) Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem 286:43334–43342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo BH, Springer TA, Takagi J (2004) A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2:776–786

    CAS  Google Scholar 

  • Mackenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133

    Article  CAS  PubMed  Google Scholar 

  • Martel V, Racaud-sultan C, Dupe S, Marie C, Paulhe F, Galmiche A, Block MR, Albiges-rizo C (2001) Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J Biol Chem 276:21217–21227

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Prandini M-H, Thevenon D, Marguerie G, Uzan G (1993) The transcription factor GATA-1 regulates the promoter activity of the platelet glycoprotein IIb gene. J Biol Chem 268:21606–21612

    CAS  PubMed  Google Scholar 

  • McEver RP, Baenziger NL, Majerus PW (1980) Isolation and quantitation of the platelet membrane glycoprotein deficient in thrombasthenia using a monoclonal hydriboma antibody. J Clin Invest 66:1311–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta RJ, Diefenbach B, Brown A, Cullen E, Jonczyk A, Gussow D, Luckenbach GA, Goodman SL (1998) Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an ‘inside-out’ suppressor? Biochem J 330(Pt 2):861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf DG, Moore DT, Wu Y, Kielec JM, Molnar K, Valentine KG, Wand AJ, Bennett JS, Degrado WF (2010) NMR analysis of the alphaIIb beta3 cytoplasmic interaction suggests a mechanism for integrin regulation. Proc Natl Acad Sci U S A 107:22481–22486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DT, Berger BW, Degrado WF (2008) Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DT, Nygren P, Jo H, Boesze-battaglia K, Bennett JS, Degrado WF (2012) Affinity of talin-1 for the beta3-integrin cytosolic domain is modulated by its phospholipid bilayer environment. Proc Natl Acad Sci U S A 109:793–798

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R (2008) Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 14:325–330

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt M, Wang HV, Sperandio M, Fassler R (2009a) Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 15:300–305

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Legate KR, Zent R, Fassler R (2009b) The tail of integrins, talin, and kindlins. Science 324:895–899

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Moser M, Pleines I, Varga-szabo D, Monkley S, Critchley D, Fassler R (2007) Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 204:3113–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niiya K, Hodson E, Bader R, Byers-ward V, Koziol JA, Plow EF, Ruggeri ZM (1987) Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood 70:475–483

    CAS  PubMed  Google Scholar 

  • O’Toole TE, Katagiri Y, Faull RJ, Peter K, Tamura R, Quaranta V, Loftus JC, Shattil SJ, Ginsberg MH (1994) Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 124:1047–1059

    Article  PubMed  Google Scholar 

  • Oki T, Eto K, Izawa K, Yamanishi Y, Inagaki N, Frampton J, Kitamura T, Kitaura J (2009) Evidence that integrin alpha IIb beta 3-dependent interaction of mast cells with fibrinogen exacerbates chronic inflammation. J Biol Chem 284:31463–31472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul BZS, Vilaire G, Kunapuli SP, Bennett JS (2003) Concurrent signaling from Gaq- and Gai-coupled pathways is essential for agonist-induced avb3 activation on human platelets. J Thrombos Haemost 1:814–820

    Article  CAS  Google Scholar 

  • Peterson JA, Visentin GP, Newman PJ, Aster RH (1998) A recombinant soluble form of the integrin alpha IIb beta 3 (GPIIb-IIIa) assumes an active, ligand-binding conformation and is recognized by GPIIb-IIIa-specific monoclonal, allo-, auto-, and drug-dependent platelet antibodies. Blood 92:2053–2063

    CAS  PubMed  Google Scholar 

  • Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, Ye F, Tiedt R, Skoda RC, Monkley SJ, Critchley DR, Ginsberg MH (2007) Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 204:3103–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowicz RS, Orchekowski RP, Nugent DJ, Yamada KY, Kunicki TJ (1988) Glycoprotein Ic-IIa functions as an activation-independent fibronectin receptor on human platelets. J Cell Biol 106:1359–1364

    Article  CAS  PubMed  Google Scholar 

  • Poncz M, Eisman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS (1987) Structure of the platelet membrane glycoprotein IIb. J Biol Chem 262:8476–8482

    CAS  PubMed  Google Scholar 

  • Poncz M, Salahandrin R, Coller BS, Newman PJ, Shattil SJ, Parrella T, Fortina P, Bennett JS (1994) Glanzmann thrombasthenia secondary to a Gly273ÆAsp mutation adjacent to the first calcium-binding domain of platelet glycoprotein IIb. J Clin Invest 93:172–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296:911–919

    Article  CAS  PubMed  Google Scholar 

  • Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296:921–936

    Article  CAS  PubMed  Google Scholar 

  • Senis YA, Mazharian A, Mori J (2014) Src family kinases: at the forefront of platelet activation. Blood 124:2013–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shattil SJ, Kashiwagi H, Pampori N (1998) Integrin signaling: the platelet paradigm. Blood 91:2645–2657

    CAS  PubMed  Google Scholar 

  • Shen B, Zhao X, O’Brien KA, Stojanovic-terpo A, Delaney MK, Kim K, Cho J, Lam SC, Du X (2013) A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shou Y, Baron S, Poncz M (1998) An Sp1-binding silencer element is a critical negative regulator of the megakaryocyte-specific alphaIIb gene. J Biol Chem 273:5716–5726

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg A, Modderman P, Hogervorst F (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336:487–488

    Article  CAS  PubMed  Google Scholar 

  • Sosnoski DM, Emanuel BS, Hawkins AL, van Tuinen P, Ledbetter DH, Nussbaum RL, Kaos F, Schwartz E, Phillips D, Bennett JS, Fitzgerald LA, Poncz M (1988) Chromosomal localization of the genes for the vitronectin and fibronectin receptors a subunits and for platelet glycoproteins IIb and IIIa. J Clin Investig 81:1993–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer TA (1997) Folding of the N-terminal, ligand-binding region of integrin a-subunits into a b-propeller domain. Proc Natl Acad Sci U S A 94:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer TA, Zhu J, Xiao T (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J Cell Biol 182:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staatz WD, Rajpara SM, Wayner EA, Carter WG, Santoro SA (1989) The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J Cell Biol 108:1917–1924

    Article  CAS  PubMed  Google Scholar 

  • Stritt S, Wolf K, Lorenz V, Vogtle T, Gupta S, Bosl MR, Nieswandt B (2015) Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood 125:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JE, Vranic J, Composto RJ, Streu C, Billings PC, Bennett JS, Weisel JW, Litvinov RI (2012) Bimolecular integrin-ligand interactions quantified using peptide-functionalized dextran-coated microparticles. Integr Biol (Camb) 4:84–92

    Article  CAS  Google Scholar 

  • Takagi J, Debottis DP, Erickson HP, Springer TA (2002a) The role of the specificity-determining loop of the integrin beta subunit I-like domain in autonomous expression, association with the alpha subunit, and ligand binding. Biochemistry 41:4339–4347

    Article  CAS  PubMed  Google Scholar 

  • Takagi J, Petre B, Walz T, Springer T (2002b) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–611

    Article  CAS  PubMed  Google Scholar 

  • Thornton MA, Poncz M, Korostishevsky M, Yakobson E, Usher S, Seligsohn U, Peretz H (1999) The human platelet aIIb gene is not closely linked to its integrin partner b3. Blood 94:2039–2047

    CAS  PubMed  Google Scholar 

  • Tozer EC, Baker EK, Ginsberg MH, Loftus JC (1999) A mutation in the a subunit of the platelet integrin aIIbb3 identifies a novel region important for ligand binding. Blood 93:918–924

    CAS  PubMed  Google Scholar 

  • Ulmer TS, Yaspan B, Ginsberg MH, Campbell ID (2001) NMR analysis of structure and dynamics of the cytosolic tails of integrin alpha IIb beta 3 in aqueous solution. Biochemistry 40:7498–7508

    Article  CAS  PubMed  Google Scholar 

  • Vallar L, Melchior C, Plancon S, Drobecq H, Lippens G, Regnault V, Kieffer N (1999) Divalent cations differentially regulate integrin aIIb cytoplasmic tail binding to b3 and to calcium- and integrin-binding protein. J Biol Chem 274:17257–17266

    Article  CAS  PubMed  Google Scholar 

  • Villa Garcia M, Li L, Riely G, Bray P (1994) Isolation and characterization of a TATA-less promoter for the human beta 3 integrin gene. Blood 83:668–676

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin aIIbb3 “inside-out” activation as regulated by its cytoplasmic face. Cell 110:587–597

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova O, Vaynberg J, Kong X, Haas TA, Plow EF, Qin J (2004) Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proc Natl Acad Sci U S A 101:4094–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE (1996) Analysis of GPIIb/IIIa receptor number by quantitation of 7E3 binding to human platelets. Blood 88:907–914

    CAS  PubMed  Google Scholar 

  • Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, Blobel GA (2002) Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J 21:5225–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID (2007) Structural basis of integrin activation by talin. Cell 128:171–182

    Article  CAS  PubMed  Google Scholar 

  • Weljie AM, Hwang PM, Vogel HJ (2002) Solution structures of the cytoplasmic tail complex from platelet integrin alpha IIb- and beta 3-subunits. Proc Natl Acad Sci U S A 99:5878–5883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong JP, Stehle T, Goodman SL, Arnaout MA (2003) New insights into the structural basis of integrin activation. Blood 102:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Goodman SL, Arnaout MA (2004) A novel adaptation of the integrin PSI domain revealed from its crystal structure. J Biol Chem 279:40252–40254

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Calderwood DA, Yaspan B, Ginsberg MH (2001) Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain. J Biol Chem 276:28164–28170

    Article  CAS  PubMed  Google Scholar 

  • Yates LA, Fuzery AK, Bonet R, Campbell ID, Gilbert RJ (2012) Biophysical analysis of Kindlin-3 reveals an elongated conformation and maps integrin binding to the membrane-distal beta-subunit NPXY motif. J Biol Chem 287:37715–37731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, Mclean MA, Sligar SG, Taylor KA, Ginsberg MH (2010) Recreation of the terminal events in physiological integrin activation. J Cell Biol 188:157–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Petrich BG, Anekal P, Lefort CT, Kasirer-friede A, Shattil SJ, Ruppert R, Moser M, Fassler R, Ginsberg MH (2013) The mechanism of kindlin-mediated activation of integrin alphaIIbbeta3. Curr Biol 23:2288–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Slusky JS, Berger BW, Walters RS, Vilaire G, Litvinov RI, Lear JD, Caputo GA, Bennett JS, Degrado WF (2007) Computational design of peptides that target transmembrane helices. Science 315:1817–1822

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 32:849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhu J, Springer TA (2013) Complete integrin headpiece opening in eight steps. J Cell Biol 201:1053–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimrin AB, Eisman R, Vilaire G, Schwartz E, Bennett JS, Poncz M (1988) Structure of platelet glycoprotein IIIa. J Clin Invest 81:1470–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimrin AB, Gidwitz S, Lord S, Schwartz E, Bennett JS, White GCD, Poncz M (1990) The genomic organization of platelet glycoprotein IIIa. J Biol Chem 265:8590–8595

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Bennett M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bennett, J.S. (2017). αIIbβ3 (GPIIb/IIIa) Structure and Function. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_8

Download citation

Publish with us

Policies and ethics