Skip to main content

The Role of Platelets in Lymphangiogenesis and Neoangiogenesis

  • Chapter
  • First Online:

Abstract

During the developmental stages, when the primary lymph sac arises from the cardinal vein, podoplanin in lymphatic endothelial cells (LECs) activates platelets by binding to CLEC-2, which facilitates blood/lymphatic vessel separation. One of the mechanisms for this process is that granule contents from activated platelets inhibit the migration and proliferation of LECs, thereby facilitating separation of the vessels. Angiogenesis consists of several steps, including activation of endothelial cells (ECs), migration to the site of the vessel branch, proliferation, and formation of tube-like structures. Granule contents released from activated platelets, including VEGF and FGF, are required for EC proliferation. On the other hand, direct contact between platelets and ECs via platelet membrane proteins, including GPIbα and αIIbβ3, prompts angiogenesis by stabilizing developing vessels. Platelets also play a crucial role in maintaining the vascular integrity of high endothelial venules in lymph nodes and inflammatory vessels via the podoplanin receptor CLEC-2 and the collagen receptor glycoprotein VI. Platelets also regulate cerebrovascular patterning and integrity during development via CLEC-2 and podoplanin in neuroepithelial cells. Thus, platelets play a role, not only in thrombosis and hemostasis, but also in lymphangiogenesis, angiogenesis, and maintenance of vascular integrity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299(5604):247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballabh P (2010) Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res 67(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Battinelli EM, Markens BA, Italiano JE Jr (2011) Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 118(5):1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender M, May F, Lorenz V, Thielmann I, Hagedorn I, Finney BA, Vogtle T, Remer K, Braun A, Bosl M, Watson SP, Nieswandt B (2013) Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 33(5):926–934

    Article  CAS  PubMed  Google Scholar 

  • Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, Xu B, Lu MM, Zhou D, Sebzda E, Santore MT, Merianos DJ, Stadtfeld M, Flake AW, Graf T, Skoda R, Maltzman JS, Koretzky GA, Kahn ML (2010) Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116(4):661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird JE, Smith PL, Bostwick JS, Shipkova P, Schumacher WA (2011) Bleeding response induced by anti-thrombotic doses of a phosphoinositide 3-kinase (PI3K)-beta inhibitor in mice. Thromb Res 127(6):560–564

    Article  CAS  PubMed  Google Scholar 

  • Booth NA, Simpson AJ, Croll A, Bennett B, MacGregor IR (1988) Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol 70(3):327–333

    Article  CAS  PubMed  Google Scholar 

  • Boulaftali Y, Adam F, Venisse L, Ollivier V, Richard B, Taieb S, Monard D, Favier R, Alessi MC, Bryckaert M, Arocas V, Jandrot-Perrus M, Bouton MC (2010) Anticoagulant and antithrombotic properties of platelet protease nexin-1. Blood 115(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Boulaftali Y, Hess PR, Getz TM, Cholka A, Stolla M, Mackman N, Owens AP 3rd, Ware J, Kahn ML, Bergmeier W (2013) Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest 123(2):908–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulaftali Y, Hess PR, Kahn ML, Bergmeier W (2014) Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ Res 114(7):1174–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill A, Elinav H, Varon D (2004) Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 63(2):226–235

    Article  CAS  PubMed  Google Scholar 

  • Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D (2005) Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 67(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • Brunner G, Nguyen H, Gabrilove J, Rifkin DB, Wilson EL (1993) Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood 81(3):631–638

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Huang Z, Zhang W, Jiang L, Hultenby K, Zhu L, Hu H, Nilsson GP, Li N (2011) Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood 117(14):3907–3911

    Article  CAS  PubMed  Google Scholar 

  • Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, Johnson LA, Jackson DG, Watson SP, O’Callaghan CA (2008) Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 411(1):133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coen RW (2013) Preventing germinal matrix layer rupture and intraventricular hemorrhage. Front Pediatr 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Danielli JF (1940) Capillary permeability and oedema in the perfused frog. J Physiol 98(1):109–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 14(14):2255–2265

    Article  CAS  PubMed  Google Scholar 

  • English D, Garcia JG, Brindley DN (2001) Platelet-released phospholipids link haemostasis and angiogenesis. Cardiovasc Res 49(3):588–599

    Article  CAS  PubMed  Google Scholar 

  • Etulain J, Mena HA, Negrotto S, Schattner M (2015) Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets. Platelets 26(8):799–804

    Article  CAS  PubMed  Google Scholar 

  • Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5(10):1199–1202

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Madajka M, Kerr BA, Mahabeleshwar GH, Whiteheart SW, Byzova TV (2011) A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing. Blood 117(14):3893–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finney BA, Schweighoffer E, Navarro-Nunez L, Benezech C, Barone F, Hughes CE, Langan SA, Lowe KL, Pollitt AY, Mourao-Sa D, Sheardown S, Nash GB, Smithers N, Reis ESC, Tybulewicz VL, Watson SP (2011) CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood 119(7):1747–1756

    Article  PubMed  Google Scholar 

  • Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang HY, Speicher KD, Blair IA, Speicher DW, Grosser T, Brass LF (2011) Deciphering the human platelet sheddome. Blood 117(1):e15–e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, Nye E, Ju T, Ramirez MI, Carmeliet P, Cummings RD, Lupu F, Xia L (2008) Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 118(11):3725–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller GL, Williams JA, Tomlinson MG, Eble JA, Hanna SL, Pohlmann S, Suzuki-Inoue K, Ozaki Y, Watson SP, Pearce AC (2007) The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 282(17):12397–12409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4(4):241–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Gimbrone MA Jr, Aster RH, Cotran RS, Corkery J, Jandl JH, Folkman J (1969) Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 222(5188):33–36

    Article  PubMed  Google Scholar 

  • Goerge T, Ho-Tin-Noe B, Carbo C, Benarafa C, Remold-O’Donnell E, Zhao BQ, Cifuni SM, Wagner DD (2008) Inflammation induces hemorrhage in thrombocytopenia. Blood 111(10):4958–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JR, Cornelissen I, Coughlin SR (2004) Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2(8):1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH (1997) Simultaneous induction of stimulatory and inhibitory signals by PDGF. FEBS Lett 410(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, Pan Y, Sheng M, Yago T, Silasi-Mansat R, McGee S, May F, Nieswandt B, Morris AJ, Lupu F, Coughlin SR, McEver RP, Chen H, Kahn ML, Xia L (2013) Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502(7469):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, Herzog B, Lu M, Nieswandt B, Oliver G, Makinen T, Xia L, Kahn ML (2014) Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 124(1):273–284

    Article  CAS  PubMed  Google Scholar 

  • Hughes CE, Navarro-Nunez L, Finney BA, Mourao-Sa D, Pollitt AY, Watson SP (2010) CLEC-2 is not required for platelet aggregation at arteriolar shear. J Thromb Haemost 8(10):2328–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichise H, Ichise T, Ohtani O, Yoshida N (2009) Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 136(2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Inoue O, Suzuki-Inoue K, McCarty OJ, Moroi M, Ruggeri ZM, Kunicki TJ, Ozaki Y, Watson SP (2006) Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood 107(4):1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111(3):1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  CAS  PubMed  Google Scholar 

  • Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, Hattori K, Zhang F, Hicklin DJ, Wu Y, Zhu Z, Dunn A, Salari H, Werb Z, Hackett NR, Crystal RG, Lyden D, Rafii S (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12(5):557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonnalagadda D, Izu LT, Whiteheart SW (2012) Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 120(26):5209–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurasz P, Alonso D, Castro-Blanco S, Murad F, Radomski MW (2003) Generation and role of angiostatin in human platelets. Blood 102(9):3217–3223

    Article  CAS  PubMed  Google Scholar 

  • Kamykowski J, Carlton P, Sehgal S, Storrie B (2011) Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood 118(5):1370–1373

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogasawara S, Matsuura N, Hasegawa Y, Suzuki-Inoue K, Inoue O, Ozaki Y, Narimatsu H (2008) Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 99(1):54–61

    CAS  PubMed  Google Scholar 

  • Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD (2006) Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A 103(4):855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klement GL, Shai E, Varon D (2013) The role of platelets in angiogenesis. In: Michaelson AD (ed) Platelets, 3rd edn. Academic, USA, pp 487–502

    Chapter  Google Scholar 

  • Lee YM, Bae MH, Lee OH, Moon EJ, Moon CK, Kim WH, Kim KW (2004) Synergistic induction of in vivo angiogenesis by the combination of insulin-like growth factor-II and epidermal growth factor. Oncol Rep 12(4):843–848

    CAS  PubMed  Google Scholar 

  • Lowe KL, Finney BA, Deppermann C, Hagerling R, Gazit SL, Frampton J, Buckley C, Camerer E, Nieswandt B, Kiefer F, Watson SP (2015) Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 125(24):3769–3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, Wallace JL (2005) Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A 102(1):216–220

    Article  CAS  PubMed  Google Scholar 

  • McGarrity ST, Hyers TM, Webster RO (1988a) Inhibition of neutrophil functions by platelets and platelet-derived products: description of multiple inhibitory properties. J Leukoc Biol 44(2):93–100

    CAS  PubMed  Google Scholar 

  • McGarrity ST, Stephenson AH, Hyers TM, Webster RO (1988b) Inhibition of neutrophil superoxide anion generation by platelet products: role of adenine nucleotides. J Leukoc Biol 44(5):411–421

    CAS  PubMed  Google Scholar 

  • Michelson AD (2012) Platelets. Elsevier, Third edn

    Google Scholar 

  • Mielke CH Jr (1982) Aspirin prolongation of the template bleeding time: influence of venostasis and direction of incision. Blood 60(5):1139–1142

    CAS  PubMed  Google Scholar 

  • Nakamura T, Kasai K, Banba N, Ishikawa M, Shimoda S (1989) Release of human epidermal growth factor from platelets in accordance with aggregation in vitro. Endocrinol Jpn 36(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Nunez L, Langan SA, Nash GB, Watson SP (2013) The physiological and pathophysiological roles of platelet CLEC-2. Thromb Haemost 109(6):991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicosia RF, Nicosia SV, Smith M (1994) Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145(5):1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka M, Iwata C, Suzuki HI, Kiyono K, Morishita Y, Watabe T, Komuro A, Kano MR, Miyazono K (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111(9):4571–4579

    Article  CAS  PubMed  Google Scholar 

  • Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, Takano K, Yatomi Y, Hirashima M, Fujii H, Suzuki-Inoue K, Ozaki Y (2012) Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells. J Biol Chem 287(26):22241–22252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki Y, Suzuki-Inoue K, Inoue O (2009) Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. J Thromb Haemost 7(Suppl 1):191–194

    Article  CAS  PubMed  Google Scholar 

  • Pintucci G, Froum S, Pinnell J, Mignatti P, Rafii S, Green D (2002) Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb Haemost 88(5):834–842

    PubMed  Google Scholar 

  • Pipili-Synetos E, Papadimitriou E, Maragoudakis ME (1998) Evidence that platelets promote tube formation by endothelial cells on matrigel. Br J Pharmacol 125(6):1252–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollitt AY, Poulter NS, Gitz E, Navarro-Nunez L, Wang YJ, Hughes CE, Thomas SG, Nieswandt B, Douglas MR, Owen DM, Jackson DG, Dustin ML, Watson SP (2014) Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 289(52):35695–35710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutella S, Vetrano S, Correale C, Graziani C, Sturm A, Spinelli A, De Cristofaro R, Repici A, Malesci A, Danese S (2011) Enhanced platelet adhesion induces angiogenesis in intestinal inflammation and inflammatory bowel disease microvasculature. J Cell Mol Med 15(3):625–634

    Article  CAS  PubMed  Google Scholar 

  • Shao XJ, Chi XY (2005) Influence of angiostatin and thalidomide on lymphangiogenesis. Lymphology 38(3):146–155

    CAS  PubMed  Google Scholar 

  • Shao XJ, Xie FM (2005) Influence of angiogenesis inhibitors, endostatin and PF-4, on lymphangiogenesis. Lymphology 38(1):1–8

    CAS  PubMed  Google Scholar 

  • Shigematsu S, Yamauchi K, Nakajima K, Iijima S, Aizawa T, Hashizume K (1999) IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr J 46(Suppl):S59–S62

    Article  CAS  PubMed  Google Scholar 

  • Stellos K, Gawaz M (2007) Platelets and stromal cell-derived factor-1 in progenitor cell recruitment. Semin Thromb Hemost 33(2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107(2):542–549

    Article  CAS  PubMed  Google Scholar 

  • Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, Ozaki Y (2007) Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 282(36):25993–26001

    Article  CAS  PubMed  Google Scholar 

  • Suzuki-Inoue K, Inoue O, Ding G, Nishimura S, Hokamura K, Eto K, Kashiwagi H, Tomiyama Y, Yatomi Y, Umemura K, Shin Y, Hirashima M, Ozaki Y (2010) Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem 285(32):24494–24507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki-Inoue K, Inoue O, Ozaki Y (2011) Novel platelet activation receptor CLEC-2: from discovery to prospects. J Thromb Haemost 9(Suppl 1):44–55

    Article  CAS  PubMed  Google Scholar 

  • Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  CAS  PubMed  Google Scholar 

  • Tsuruo T, Fujita N (2008) Platelet aggregation in the formation of tumor metastasis. Proc Jpn Acad Ser B Phys Biol Sci 84(6):189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, Fuertbauer E, Moser M, Haiko P, Fassler R, Alitalo K, Binder BR, Kerjaschki D (2010) Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115(19):3997–4005

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve J, Block A, Le Bousse-Kerdiles MC, Lepreux S, Nurden P, Ripoche J, Nurden AT (2009) Tissue inhibitors of matrix metalloproteinases in platelets and megakaryocytes: a novel organization for these secreted proteins. Exp Hematol 37(7):849–856

    Article  CAS  PubMed  Google Scholar 

  • Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM, Rak J, Kerbel RS (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61(13):5090–5101

    CAS  PubMed  Google Scholar 

  • Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12(2):112–127

    CAS  PubMed  Google Scholar 

  • Washington AV, Gibot S, Acevedo I, Gattis J, Quigley L, Feltz R, De La Mota A, Schubert RL, Gomez-Rodriguez J, Cheng J, Dutra A, Pak E, Chertov O, Rivera L, Morales J, Lubkowski J, Hunter R, Schwartzberg PL, McVicar DW (2009) TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J Clin Invest 119(6):1489–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson SP, Auger JM, McCarty OJ, Pearce AC (2005) GPVI and integrin alphaIIb beta3 signaling in platelets. J Thromb Haemost 3(8):1752–1762

    Article  CAS  PubMed  Google Scholar 

  • Weyrich AS, Lindemann S, Zimmerman GA (2003) The evolving role of platelets in inflammation. J Thromb Haemost 1(9):1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S (1997) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 121(5):969–973

    Article  CAS  PubMed  Google Scholar 

  • Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, Satoh K, Kume S, Tigyi G, Igarashi Y, Ozaki Y (2000) Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96(10):3431–3438

    CAS  PubMed  Google Scholar 

  • Zaslavsky A, Baek KH, Lynch RC, Short S, Grillo J, Folkman J, Italiano JE Jr, Ryeom S (2010) Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 115(22):4605–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsue Suzuki-Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Suzuki-Inoue, K., Shirai, T. (2017). The Role of Platelets in Lymphangiogenesis and Neoangiogenesis. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_31

Download citation

Publish with us

Policies and ethics