Skip to main content

Platelet-Derived Microparticles

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

Numerous findings have allowed the field of microparticles (MP) to progress dramatically from the original discovery of platelet dusts characterizing the phenotypes and functions of these novel subcellular biovectors, investigating the mechanisms of their formation from parental cells, determining their effects on others cells both in physiology and disease states, and translating these notions to disease innovative diagnosis and treatment. The present chapter focuses on platelet-derived MP (PMP) characteristics, biogenesis, and biological roles. After a rapid overview of detection methods, PMP paradoxical functions in disease process and regenerative medicine are discussed, together with future prospects as diagnostic tools and therapeutic agents. PMP are naturally diffusible vectors that play a role in cell/cell communication and deliver active biomolecules. This is believed to have significant pathological implication in the development of several diseases such as cancer, thromboembolism, and atherosclerosis, among others. There is still much research required to understand the paradoxical roles played by PMP in triggering pathological events but also sustaining vessel growth and tissue regeneration. Clinical data linking PMP to pathologies should be interpreted with some caution due to the lack of standardization and technical limitations of methods for PMP exploration that have been applied so far. The recent progress in new methodologies addressing the pitfalls of current techniques in PMP isolation and detection, capable of detecting and counting PMP more accurately, to assess their variability and measure their functional activity, will contribute to a better understanding of their pathological role and also their potential promising use in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agouti I, Cointe S, Robert S, Judicone C, Loundou A, Driss F, Brisson A, Steschenko D, Rose C, Pondarre C, Bernit E, Badens C, Dignat-George F, Lacroix R, Thuret I (2015) Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients. Br J Haematol 171:615–624

    Article  CAS  PubMed  Google Scholar 

  • Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, Brisson AR (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12:614–627

    Article  CAS  PubMed  Google Scholar 

  • Artoni A, Merati G, Padovan L, Scalambrino E, Chantarangkul V, Tripodi A (2012) Residual platelets are the main determinants of microparticles count in frozen-thawed plasma. Thromb Res 130:561–562

    Article  CAS  PubMed  Google Scholar 

  • Ayers L, Kohler M, Harrison P, Sargent I, Dragovic R, Schaap M, Nieuwland R, Brooks SA, Ferry B (2011) Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res 127:370–377

    Article  CAS  PubMed  Google Scholar 

  • Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30:450–459

    Article  CAS  PubMed  Google Scholar 

  • Barry OP, Pratico D, Lawson JA, FitzGerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 99:2118–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry OP, Pratico D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102:136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry OP, Kazanietz MG, Pratico D, FitzGerald GA (1999) Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem 274:7545–7556

    Article  CAS  PubMed  Google Scholar 

  • Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85:639–646

    CAS  PubMed  Google Scholar 

  • Berckmans RJ, Nieuwland R, Tak PP, Boing AN, Romijn FP, Kraan MC, Breedveld FC, Hack CE, Sturk A (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46:2857–2866

    Article  CAS  PubMed  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D (2005) Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 67:30–38

    Article  CAS  PubMed  Google Scholar 

  • Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–212

    Article  CAS  PubMed  Google Scholar 

  • Bucki R, Pastore JJ, Giraud F, Janmey PA, Sulpice JC (2006) Involvement of the Na+/H+ exchanger in membrane phosphatidylserine exposure during human platelet activation. Biochim Biophys Acta 1761:195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124:423–441

    Article  CAS  Google Scholar 

  • Burnouf T, Goubran HA, Chen TM, Ou KL, El-Ekiaby M, Radosevic M (2013) Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 27:77–89

    Article  CAS  PubMed  Google Scholar 

  • Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Lagana A (2013) Proteomic characterization of human platelet-derived microparticles. Anal Chim Acta 776:57–63

    Article  CAS  PubMed  Google Scholar 

  • Castoldi E, Collins PW, Williamson PL, Bevers EM (2011) Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 117:4399–4400

    Article  CAS  PubMed  Google Scholar 

  • Chahed S, Leroyer AS, Benzerroug M, Gaucher D, Georgescu A, Picaud S, Silvestre JS, Gaudric A, Tedgui A, Massin P, Boulanger CM (2010) Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 59:694–701

    Article  CAS  PubMed  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TM, Tsai JC, Burnouf T (2010) A novel technique combining platelet gel, skin graft, and fibrin glue for healing recalcitrant lower extremity ulcers. Dermatol Surg 36:453–460

    Article  CAS  PubMed  Google Scholar 

  • Chow TW, Hellums JD, Thiagarajan P (2000) Thrombin receptor activating peptide (SFLLRN) potentiates shear-induced platelet microvesiculation. J Lab Clin Med 135:66–72

    Article  CAS  PubMed  Google Scholar 

  • Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, Albert A, Shnayder R, Gobezie R, Nigrovic PA, Farndale RW, Robinson WH, Brisson A, Lee DM, Boilard E (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z, Gonzales RF, Davis-Gorman GF, Copeland JG, McDonagh PF (2002) Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: a potential correlation with caspase activation. Thromb Res 107:217–221

    Article  CAS  PubMed  Google Scholar 

  • Combes V, Coltel N, Faille D, Wassmer SC, Grau GE (2006) Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier. Int J Parasitol 36:541–546

    Article  CAS  PubMed  Google Scholar 

  • Coumans FA, van der Pol E, Boing AN, Hajji N, Sturk G, van Leeuwen TG, Nieuwland R (2014) Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles 3:25922

    Article  PubMed  Google Scholar 

  • Cramer EM, Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Masse JM, Debili N (1997) Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 89:2336–2346

    CAS  PubMed  Google Scholar 

  • Cunningham CC (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol 129:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Daleke DL (2003) Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 44:233–242

    Article  CAS  PubMed  Google Scholar 

  • Dashevsky O, Varon D, Brill A (2009) Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer 124:1773–1777

    Article  CAS  PubMed  Google Scholar 

  • Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW (2009) Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 102:711–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374

    CAS  PubMed  Google Scholar 

  • Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33

    Article  CAS  PubMed  Google Scholar 

  • Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7:780–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faille D, Combes V, Mitchell AJ, Fontaine A, Juhan-Vague I, Alessi MC, Chimini G, Fusai T, Grau GE (2009) Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB J 23:3449–3458

    Article  CAS  PubMed  Google Scholar 

  • Faille D, El-Assaad F, Mitchell AJ, Alessi MC, Chimini G, Fusai T, Grau GE, Combes V (2012) Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 16:1731–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaumenhaft R (2006) Formation and fate of platelet microparticles. Blood Cells Mol Dis 36:182–187

    Article  CAS  PubMed  Google Scholar 

  • Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, Klement GL, Sola-Visner M, Italiano JE Jr (2009) Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood 113:1112–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forlow SB, McEver RP, Nollert MU (2000) Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 95:1317–1323

    CAS  PubMed  Google Scholar 

  • Freyssinet JM (2003) Cellular microparticles: what are they bad or good for? J Thromb Haemost 1:1655–1662

    Article  CAS  PubMed  Google Scholar 

  • Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF (2005) The platelet microparticle proteome. J Proteome Res 4:1516–1521

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez M, Carlo A, Poncelet P, Boulay-Moine D, Nicham F, Arnaud E, Contant G, Woodhams B (2009) Sensitivity of 2 functional haemostasis assays to platelet-derived microparticles (PMP). J Thromb Haemost 7:Abstract PP-MO-766.

    Google Scholar 

  • Gruber R, Varga F, Fischer MB, Watzek G (2002) Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res 13:529–535

    Article  PubMed  Google Scholar 

  • Guervilly C, Lacroix R, Forel JM, Roch A, Camoin-Jau L, Papazian L, Dignat-George F (2011) High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care 15:R31

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamon Y, Broccardo C, Chambenoit O, Luciani MF, Toti F, Chaslin S, Freyssinet JM, Devaux PF, McNeish J, Marguet D, Chimini G (2000) ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2:399–406

    Article  CAS  PubMed  Google Scholar 

  • Hayon Y, Dashevsky O, Shai E, Brill A, Varon D, Leker RR (2012a) Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr Neurovasc Res 9:185–192

    Article  CAS  PubMed  Google Scholar 

  • Hayon Y, Dashevsky O, Shai E, Varon D, Leker RR (2012b) Platelet microparticles promote neural stem cell proliferation, survival and differentiation. J Mol Neurosci 47:659–665

    Article  CAS  PubMed  Google Scholar 

  • Headland SE, Jones HR, D’Sa AS, Perretti M, Norling LV (2014) Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep 4:5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88:186–193

    CAS  PubMed  Google Scholar 

  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  • Helley D, Banu E, Bouziane A, Banu A, Scotte F, Fischer AM, Oudard S (2009) Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol 56:479–484

    Article  CAS  PubMed  Google Scholar 

  • Hemker HC, Giesen P, AlDieri R, Regnault V, de Smed E, Wagenvoord R, Lecompte T, Beguin S (2002) The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb 32:249–253

    Article  CAS  PubMed  Google Scholar 

  • Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W, Mastrobattista E, van Gaal EV, Stoorvogel W, Arkesteijn GJ, Wauben MH (2011) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8:712–720

    Google Scholar 

  • Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, Sakariassen KS (1997) Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 17:646–653

    Article  CAS  PubMed  Google Scholar 

  • Horstman LL, Ahn YS (1999) Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 30:111–142

    Article  CAS  PubMed  Google Scholar 

  • Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS (2004) New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 53:210–230

    Article  CAS  PubMed  Google Scholar 

  • Horstman LL, Jy W, Minagar A, Bidot CJ, Jimenez JJ, Alexander JS, Ahn YS (2007) Cell-derived microparticles and exosomes in neuroinflammatory disorders. Int Rev Neurobiol 79:227–268

    Article  CAS  PubMed  Google Scholar 

  • Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A, de Assis EF, Vals-de-Souza R, Castro-Faria-Neto HC, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT (2014) Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol 193:1864–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugel B, Socie G, Vu T, Toti F, Gluckman E, Freyssinet JM, Scrobohaci ML (1999) Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood 93:3451–3456

    CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Mairuhu AT, Flaumenhaft R (2010) Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 17:578–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwamoto S, Kawasaki T, Kambayashi J, Ariyoshi H, Monden M (1996) Platelet microparticles: a carrier of platelet-activating factor? Biochem Biophys Res Commun 218:940–944

    Article  CAS  PubMed  Google Scholar 

  • Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR, Di Paola J (2008) Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 111:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, Hack CE, Sturk A (2001) Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 85:810–820

    CAS  PubMed  Google Scholar 

  • Jy W, Horstman LL, Arce M, Ahn YS (1992) Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med 119:334–345

    CAS  PubMed  Google Scholar 

  • Jy W, Horstman LL, Jimenez JJ, Ahn YS (2004) Measuring circulating cell-derived microparticles. J Thromb Haemost 2:1842–1851

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Ryu KW, Bae JM, Kim S (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39:184–191

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Song KS, Chung JH, Lee KR, Lee SN (2004) Platelet microparticles induce angiogenesis in vitro. Br J Haematol 124:376–384

    Article  PubMed  Google Scholar 

  • Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503

    Article  CAS  PubMed  Google Scholar 

  • Lacroix R, Dignat-George F (2013) Microparticles: new protagonists in pericellular and intravascular proteolysis. Semin Thromb Hemost 39:33–39

    Article  CAS  PubMed  Google Scholar 

  • Lacroix R, Poncelet P, Robert S, Key N, Dignat-george F (2009) Standardization of flow cytometry-based enumeration of platelet microparticles using calibrated beads: results of instrument qualification. J Thromb Haemost 7(Suppl 2).

    Google Scholar 

  • Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F (2010) Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 8:2571–2574

    Article  CAS  PubMed  Google Scholar 

  • Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J, Dignat-George F (2012a) Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 10:437–446

    Article  CAS  PubMed  Google Scholar 

  • Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, Martinez de Lizarrondo S, Mezzapesa A, Anfosso F, Leroyer AS, Poullin P, Jourde N, Njock MS, Boulanger CM, Angles-Cano E, Dignat-George F (2012b) Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 97:1864–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix R, Dubois C, Leroyer AS, Sabatier F, Dignat-George F (2013a) Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost 11(Suppl 1):24–35

    Article  PubMed  Google Scholar 

  • Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F (2013b) Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 11:1190–1193

    Article  Google Scholar 

  • Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122:253–261

    Article  CAS  PubMed  Google Scholar 

  • Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P (2009) Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang 96:206–212

    Article  CAS  PubMed  Google Scholar 

  • Leroyer AS, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z, Binder BR, Tedgui A, Boulanger CM (2007) Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772–777

    Article  CAS  PubMed  Google Scholar 

  • Leytin V, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J (2009) Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Lab Invest 89:374–384

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cong H (2009) Platelet-derived microparticles and the potential of glycoprotein IIb/IIIa antagonists in treating acute coronary syndrome. Tex Heart Inst J 36:134–139

    PubMed  Google Scholar 

  • Lopez JJ, Salido GM, Pariente JA, Rosado JA (2008) Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 6:1780–1788

    Article  CAS  PubMed  Google Scholar 

  • Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlondorff D (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6:769–775

    Article  CAS  PubMed  Google Scholar 

  • Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99:348–353

    Article  CAS  PubMed  Google Scholar 

  • Manno S, Takakuwa Y, Mohandas N (2002) Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc Natl Acad Sci U S A 99:1943–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25:1512–1518

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88:3456–3464

    CAS  PubMed  Google Scholar 

  • Morel O, Toti F, Hugel B, Freyssinet JM (2004) Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 11:156–164

    Article  CAS  PubMed  Google Scholar 

  • Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet JM (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26:2594–2604

    Article  CAS  PubMed  Google Scholar 

  • Mullier F, Minet V, Bailly N, Devalet B, Douxfils J, Chatelain C, Elalamy I, Dogmé J, Chatelain B (2014) Platelet microparticle generation assay: a valuable test for immune heparin-induced thrombocytopenia diagnosis. Thromb Res 133:1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Mutschler DK, Larsson AO, Basu S, Nordgren A, Eriksson MB (2002) Effects of mechanical ventilation on platelet microparticles in bronchoalveolar lavage fluid. Thromb Res 108:215–220

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Shouzu A, Taomoto K, Togane Y, Goto S, Ozaki Y, Uchiyama S, Ikeda Y (2009) Assessment of an ELISA kit for platelet-derived microparticles by joint research at many institutes in Japan. J Atheroscler Thromb 16:878–887

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Omoto S, Yokoi T, Fujita S, Ozasa R, Eguchi N, Shouzu A (2011) Effects of miglitol in platelet-derived microparticle, adiponectin, and selectin level in patients with type 2 diabetes mellitus. Int J Gen Med 4:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E (2008) Platelets and wound healing. Front Biosci 13:3532–3548

    PubMed  Google Scholar 

  • Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H (2001) Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma 50:801–809

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka M, Sasaki K, Ueno T, Seki R, Nakayoshi T, Koiwaya H, Toyama Y, Yokoyama S, Mitsutake Y, Chibana H, Itaya N, Okamura T, Imaizumi T (2013) Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients. Atherosclerosis 227:275–282

    Article  CAS  PubMed  Google Scholar 

  • Osumi K, Ozeki Y, Saito S, Nagamura Y, Ito H, Kimura Y, Ogura H, Nomura S (2001) Development and assessment of enzyme immunoassay for platelet-derived microparticles. Thromb Haemost 85:326–330

    CAS  PubMed  Google Scholar 

  • Owens AP 3rd, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108:1284–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JO, Choi DY, Choi DS, Kim HJ, Kang JW, Jung JH, Lee JH, Kim J, Freeman MR, Lee KY, Gho YS, Kim KP (2013) Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. Proteomics 13:2125–2134

    Article  CAS  PubMed  Google Scholar 

  • Piguet PF, Vesin C (2002) Modulation of platelet caspases and life-span by anti-platelet antibodies in mice. Eur J Haematol 68:253–261

    Article  CAS  PubMed  Google Scholar 

  • Poncelet P, Robert S, Bouriche T, Bez J, Lacroix R, Dignat-George F (2015) Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: forward or side scatter? Cytometry A. doi:10.1002/cyto.a.22685

    PubMed  Google Scholar 

  • Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M (2009) Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114:723–732

    Article  CAS  PubMed  Google Scholar 

  • Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A (2010) The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 26:140–145

    Article  PubMed  Google Scholar 

  • Rand ML, Wang H, Bang KW, Packham MA, Freedman J (2006) Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost 4:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Ray DM, Spinelli SL, Pollock SJ, Murant TI, O’Brien JJ, Blumberg N, Francis CW, Taubman MB, Phipps RP (2008) Peroxisome proliferator-activated receptor gamma and retinoid X receptor transcription factors are released from activated human platelets and shed in microparticles. Thromb Haemost 99:86–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert S, Lacroix R, Poncelet P, Harhouri K, Bouriche T, Judicone C, Wischhusen J, Arnaud L, Dignat-George F (2012) High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles—brief report. Arterioscler Thromb Vasc Biol 32:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ (2003) Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17:33–42

    Article  CAS  PubMed  Google Scholar 

  • Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW, Buerke M, Tilley RE, Rondina MT, Harris EM, Kraiss LW, Mackman N, Zimmerman GA, Weyrich AS (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 203:2433–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seigneuret M, Zachowski A, Hermann A, Devaux PF (1984) Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry 23:4271–4275

    Article  CAS  PubMed  Google Scholar 

  • Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67:499–511

    Article  CAS  PubMed  Google Scholar 

  • Shan LY, Li JZ, Zu LY, Niu CG, Ferro A, Zhang YD, Zheng LM, Ji Y (2013) Platelet-derived microparticles are implicated in remote ischemia conditioning in a rat model of cerebral infarction. CNS Neurosci Ther 19:917–925

    Article  CAS  PubMed  Google Scholar 

  • Shcherbina A, Remold-O’Donnell E (1999) Role of caspase in a subset of human platelet activation responses. Blood 93:4222–4231

    CAS  PubMed  Google Scholar 

  • Siljander PR (2011) Platelet-derived microparticles—an updated perspective. Thromb Res 127(Suppl 2):S30–S33

    Article  CAS  PubMed  Google Scholar 

  • Simak J, Gelderman MP (2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 20:1–26

    Article  PubMed  Google Scholar 

  • Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    CAS  PubMed  Google Scholar 

  • Sims PJ, Rollins SA, Wiedmer T (1989) Regulatory control of complement on blood platelets. Modulation of platelet procoagulant responses by a membrane inhibitor of the C5b-9 complex. J Biol Chem 264:19228–19235

    CAS  PubMed  Google Scholar 

  • Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL (2008) Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111:5028–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468(7325):834–838

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  • Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM (1996) Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87:1409–1415

    CAS  PubMed  Google Scholar 

  • Tzeng YS, Deng SC, Wang CH, Tsai JC, Chen TM, Burnouf T (2013) Treatment of nonhealing diabetic lower extremity ulcers with skin graft and autologous platelet gel: a case series. Biomed Res Int 2013:837620

    Article  PubMed  PubMed Central  Google Scholar 

  • Untch B, Ahmad S, Jeske WP, Messmore HL, Hoppensteadt DA, Walenga JM, Lietz H, Fareed J (2002) Prevalence, isotype, and functionality of antiheparin-platelet factor 4 antibodies in patients treated with heparin and clinically suspected for heparin-induced thrombocytopenia. The pathogenic role of IgG. Thromb Res 105:117–123

    Article  CAS  PubMed  Google Scholar 

  • Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renne T, ten Cate H, Spronk HM (2012) Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 10:1355–1362

    Article  CAS  Google Scholar 

  • van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12:1182–1192

    Article  PubMed  Google Scholar 

  • van der Zee PM, Biro E, Ko Y, de Winter RJ, Hack CE, Sturk A, Nieuwland R (2006) P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 52:657–664

    Article  PubMed  CAS  Google Scholar 

  • Varon D, Shai E (2009) Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med 8:237–241

    PubMed  Google Scholar 

  • Wang Y, Litvinov RI, Chen X, Bach TL, Lian L, Petrich BG, Monkley SJ, Kanaho Y, Critchley DR, Sasaki T, Birnbaum MJ, Weisel JW, Hartwig J, Abrams CS (2008) Loss of PIP5KIgamma, unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. J Clin Invest 118:812–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Shi Q, Li S, Du J, Liu J, Dai K (2010) Hyperthermia induces platelet apoptosis and glycoprotein Ibalpha ectodomain shedding. Platelets 21:229–237

    Article  PubMed  Google Scholar 

  • Watts JA, Lee YY, Gellar MA, Fulkerson MB, Hwang SI, Kline JA (2012) Proteomics of microparticles after experimental pulmonary embolism. Thromb Res 130:122–128

    Article  CAS  PubMed  Google Scholar 

  • Wiedmer T, Shattil SJ, Cunningham M, Sims PJ (1990) Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry 29:623–632

    Article  CAS  PubMed  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  CAS  PubMed  Google Scholar 

  • Wu ZH, Ji CL, Li H, Qiu GX, Gao CJ, Weng XS (2013) Membrane microparticles and diseases. Eur Rev Med Pharmacol Sci 17:2420–2427

    PubMed  Google Scholar 

  • Xu Y, Nakane N, Maurer-Spurej E (2011) Novel test for microparticles in platelet-rich plasma and platelet concentrates using dynamic light scattering. Transfusion 51:363–370

    Article  PubMed  Google Scholar 

  • Yang MY, Chuang H, Chen RF, Yang KD (2002) Reversible phosphatidylserine expression on blood granulocytes related to membrane perturbation but not DNA strand breaks. J Leukoc Biol 71:231–237

    CAS  PubMed  Google Scholar 

  • Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, Osanto S (2010) Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost 8:315–323

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR, Iciek LA, Morgan SJ, Nasarre MC, Nelson R, Preusser LC, Reinhart GA, Smith ML, Rosenberg SH, Elmore SW, Tse C (2007) Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 14:943–951

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Ma L, Wang S, Chen C, Zhang W, Yang L, Hang W, Nolan JP, Wu L, Yan X (2014) Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 8:10998–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1121–1132

    CAS  PubMed  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM (1992) Platelet procoagulant activity and microvesicle formation. Its putative role in hemostasis and thrombosis. Biochim Biophys Acta 1180:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zwicker JI (2008) Tissue factor-bearing microparticles and cancer. Semin Thromb Hemost 34:195–198

    Article  CAS  PubMed  Google Scholar 

  • Zwicker JI, Lacroix R, Dignat-George F, Furie BC, Furie B (2012) Measurement of platelet microparticles. Methods Mol Biol 788:127–139

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Dignat-George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cointe, S., Lacroix, R., Dignat-George, F. (2017). Platelet-Derived Microparticles. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_28

Download citation

Publish with us

Policies and ethics